Specifications
Table Of Contents
- Preface
- Quick Start Guide
- Table of Contents
- Chapter 1 General Information
- Functional Description
- Physical Description
- Application Considerations
- Basic MX-2100 System
- Redundancy (not for MX-2104)
- Dual Link Operation (not for MX-2104)
- Priority Bumping \(not for MX2104\)
- Switched Backup Operation (not for MX-2104)
- Switch Mode
- System Management
- System Timing Considerations
- DTE Timing (KML.1, KML.2, KML.3, KML.4 and KML.10 Modules)
- External DCE Timing (KML.1, KML.2, KML.3 and KML.4 Modules)
- DCE Timing (KML.1, KML.2, KML.3 and KML.4 Modules)
- Internal Timing (KML.5, KML.6, KML.7, KML.8, and KML.F Modules)
- Loopback Timing (KML.5, KML.6, KML.7, KML.8, and KML.F Modules)
- DCE Timing (KML.7, KML.8, and KML.F Modules)
- Main Link Timing Considerations in Bypassing and Multidrop Configurations
- Data Channel Clock Modes
- Timing Modes of ISDN Channels
- Sub Link Timing
- Main Link Interface Characteristics
- V.35 Interface (Module KML.1)
- RS-232 Interface (Module KML.2)
- V.36/RS-422/RS-530 Interface (Module KML.3)
- X.21 Interface (Module KML.4)
- G.703 Codirectional Interface (Module KML.5)
- Standard DDS CSU/DSU (Module KML.6)
- T1 Link Interface (Module KML.7)
- E1 Link Interface (Module KML.8)
- ISDN "S" Interface (Module KML.10/S)
- ISDN "U" Interface (Module KML.10/U)
- Fiber-Optic Link Interface (Module KML.F)
- I/O Module Applications
- Technical System Characteristics
- Chapter 2 Installation
- Introduction
- Site Requirements and Prerequisites
- Input Power Requirements
- Grounding
- Channel Connection Considerations
- Front and Rear Panel Clearance
- Ambient Requirements
- Electromagnetic Compatibility Considerations
- Current and Power Requirements of MX-2100 Power Supply Modules
- Current and Power Capabilities of MX-2100 Power Supply Modules
- Ratings of Ring and Feed Voltage Supplies
- Equipment Needed
- Package Contents
- Installation and Setup of MX-2100
- Interfaces and Connections
- Initial Setup and Configuration
- Chapter 3 Configuring MX-2100
- Chapter 4 Operation
- Chapter 5 Diagnostics
- Appendix A Connection Data
- Appendix B Alarms
- Appendix C SNMP Management
- Appendix D Software Download
- Appendix E Configuration Parameters
- Appendix F Command Set Description
- General
- Commands
- BYE
- CLR ALM
- CLR LOOP
- CLR MONITOR
- CONNECT SWITCH
- DATE
- DEF AGENDA
- DEF AGENT
- DEF ALM DEBOUNCE
- DEF CALL
- DEF CH
- DEF CON
- DEF DB FLIP
- DEF DP
- DEF FRAME
- DEF MANAGER LIST
- DEF ML
- DEF ML CALL
- DEF NAME
- DEF NODE
- DEF NP
- DEF PWD
- DEF ROUTE
- DEF SP
- DEF SYS
- DISCONNECT SWITCH
- DSP AGENT
- DSP ALM
- DSP BERT
- DSP CH CON
- DSP FLIP
- DSP HDR TST
- DSP MANAGER LIST
- DSP KVF5orDSP PBX
- DSP KVF6
- DSP SIGNALINGorDSP SIG
- DSP PRBS_INJ
- DSP REM AGENT
- DSP REV
- DSP ST FRAME
- DSP ST ML
- DSP ST SLOT
- DSP ST SYS
- EDIT DB
- EXIT
- F
- FLIP ML
- HELP
- INIT DB
- INIT F
- LOAD DB 1\2
- LOAD IO
- LOOP
- ML RECOVERY
- MONITOR
- REBUILD FRAME
- RESET LOC
- RESET IO
- RESET ML
- TIME
- UPDATE DB 1\2
- Index
- DC Power Supply Connection

MX-2100/2104 Installation and Operation Manual Chapter 1 General Information
Application Considerations 1-23
KML A
KML B
Location A
Location B
Location A
User Connected
to Location B
User Connected
to Location C
MX-2100
MX-2100
MX-2100
Figure 1-12. Dual Link System, Independent Link Application
Bypassing Configurations
Dual-link configurations also enable direct transfer of channel between the two
links (this is called bypassing). This function requires the presence of a KDI module
in MX-2100.
Figure 1-13 shows the operation of the basic bypassing configuration. In
Figure 1-13, some of the users at location A are connected to users at location B,
and other users at location A are connected, using the bypassing function of the
KDI module, to users at location C (the connection is full duplex). As explained
above, with respect to bypassing, the multidrop channel is handled either as a
bypassed channel, or as a dropped channel, depending on the state of the RTS
line.
The KDI module supports the bypassing of one contiguous block of bits from one
link to the other. The bypassed block is specified by three parameters:
• The position of the first bit (the starting bit) of the block to be bypassed in the
multiplexed frame of main link A
• The number of bits to be bypassed (the block size)
• The position of the first bit (the starting bit) of the block in the frame of main
link B. This may differ from the starting bit on main link A.