Datasheet

±15kV ESD-Protected, Single/Dual/Octal,
CMOS Switch Debouncers
damage. The ESD structures withstand high ESD in all
states: normal operation, shutdown, and powered
down. After an ESD event, the MAX6816/MAX6817/
MAX6818 keep working without latchup, whereas other
solutions can latch and must be powered down to
remove latchup.
ESD protection can be tested in various ways; these
products are characterized for protection to the follow-
ing limits:
1) ±15kV using the Human Body Model
2) ±8kV using the Contact-Discharge method specified
in IEC 1000-4-2
3) ±15kV using IEC 1000-4-2’s Air-Gap method.
ESD Test Conditions
ESD performance depends on a variety of conditions.
Contact Maxim for a reliability report that documents
test setup, test methodology, and test results.
Human Body Model
Figure 6a shows the Human Body Model and Figure 6b
shows the current waveform it generates when dis-
charged into a low impedance. This model consists of
a 100pF capacitor charged to the ESD voltage of inter-
est, which is then discharged into the test device
through a 1.5kΩ resistor.
IEC 1000-4-2
The IEC 1000-4-2 standard covers ESD testing and
performance of finished equipment; it does not specifi-
cally refer to integrated circuits. The MAX6816/
MAX6817/MAX6818 help you design equipment that
I
P
100%
90%
36.8%
t
RL
TIME
t
DL
CURRENT WAVEFORM
PEAK-TO-PEAK RINGING
(NOT DRAWN TO SCALE)
I
r
10%
0
0
AMPERES
Figure 6b. Human Body Current Waveform
t
r
= 0.7ns to 1ns
30ns
60ns
t
100%
90%
10%
I
PEAK
I
Figure 7b. IEC 1000-4-2 ESD Generator Current Waveform
CHARGE-CURRENT
LIMIT RESISTOR
DISCHARGE
RESISTANCE
STORAGE
CAPACITOR
C
s
100pF
R
C
1MΩ R
D
1500Ω
HIGH-
VOLTAGE
DC
SOURCE
DEVICE
UNDER
TEST
Figure 6a. Human Body ESD Test Model Figure 7a. IEC 1000-4-2 ESD Test Model
CHARGE CURRENT
LIMIT RESISTOR
DISCHARGE
RESISTANCE
STORAGE
CAPACITOR
C
s
150pF
R
C
50MΩ to 100MΩ R
D
330Ω
HIGH-
VOLTAGE
DC
SOURCE
DEVICE
UNDER
TEST
6
Maxim Integrated
MAX6816/MAX6817/MAX6818