Datasheet

MAX6698
7-Channel Precision Remote-Diode, Thermistor,
and Local Temperature Monitor
______________________________________________________________________________________ 17
3) Route the DXP and DXN traces in parallel and in
close proximity to each other. Each parallel pair of
traces should go to a remote diode. Route these
traces away from any higher voltage traces, such as
+12VDC. Leakage currents from PCB contamination
must be dealt with carefully since a 20M leakage
path from DXP to ground causes about +1°C error. If
high-voltage traces are unavoidable, connect guard
traces to GND on either side of the DXP-DXN traces
(Figure 5).
4) Route through as few vias and crossunders as pos-
sible to minimize copper/solder thermocouple
effects.
5) Use wide traces when practical.
6) When the power supply is noisy, add a resistor (up
to 47) in series with V
CC
.
Twisted-Pair and Shielded Cables
Use a twisted-pair cable to connect the remote sensor
for remote-sensor distances longer than 8in or in very
noisy environments. Twisted-pair cable lengths can be
between 6ft and 12ft before noise introduces excessive
errors. For longer distances, the best solution is a
shielded twisted pair like that used for audio micro-
phones. For example, Belden #8451 works well for dis-
tances up to 100ft in a noisy environment. At the
device, connect the twisted pair to DXP and DXN and
the shield to GND. Leave the shield unconnected at the
remote sensor. For very long cable runs, the cable’s
parasitic capacitance often provides noise filtering, so
the 2200pF capacitor can often be removed or reduced
in value. Cable resistance also affects remote-sensor
accuracy. For every 1 of series resistance the error is
approximately +1/2°C.
10 mils
10 mils
10 mils
MINIMUM
10 mils
GND
DXP
DXN
GND
Figure 5. Recommended DXP-DXN PCB Traces