Datasheet

Industry’s Lowest-Power
Ambient Light Sensor with ADC
The Upper Threshold High-Byte register exponent with the four most significant bits of the mantissa sets the upper trip
level for interrupt functionality. This upper limit is relevant only if the INTE bit in the interrupt enable register is set. If the
lux level is greater than this light level for a time greater than that specified in the Threshold Timer register, the INTS
bit in the Interrupt Status register is set and the INT pin is pulled low.
Mantissa (UM[7:4]): Four most significant bits of mantissa upper threshold
Exponent (UE[3:0]): Exponent bits upper threshold
Upper lux threshold = 2
(exponent)
x mantissa x 0.045
Exponent = 8xUE3 + 4xUE2 + 2xUE1 + UE0
Mantissa = 128xUM7+ 64xUM6+ 32xUM5 + 16xUM4 +15
Upper Threshold High-Byte Register 0x05
Bits in Lux Low-Byte register 0x04 give the 4 least significant bits of the mantissa byte representing the lux reading
of ambient light. Combined with the Lux High-Byte register 0x03, it extends the resolution and dynamic range of lux
measurements of the IC.
E3–E0: Exponent bits of lux reading
M7–M0: Mantissa byte of lux reading
Lux = 2
(exponent)
x mantissa x 0.045
Exponent = 8xE3 + 4xE2 + 2xE1 + E0
Mantissa = 128xM7 + 64xM6 + 32xM5 + 16xM4 + 8xM3 + 4xM2 + 2xM1 + M0
Combining contents of register 0x03 and 0x04:
A code of 0000 0000 0001 calculates to be 0.045 lux.
A code of 0000 0001 0000 calculates to be 0.72 lux.
A code of 0001 0001 0001 calculates to be 0.765 lux.
A code of 1110 1111 1111 calculates to be 188,006 lux.
A code of 1110 1111 1110 calculates to be 187,269 lux.
The Lux High-Byte 0x03 and Lux Low-Byte 0x04 register updates are internally disabled at the start of a valid address
transmission from the master. Updating reinitiates at the next valid STOP condition. This prevents erroneous readings
in the event an update occurs between readings of registers 0x03 and 0x04.
Update of the contents of this register is internally disabled during I
2
C read operations to ensure proper data transfer
between internal ADC and I
2
C registers. Update of I
2
C registers is resumed when the master sends a STOP command.
If the user wants to read both the Lux High-Byte register 0x03 and Lux Low-Byte register 0x04, then the master should
not send a STOP command between the reads of the two registers. Instead a Repeated START command should be
used. This ensures accurate data is obtained from the I
2
C registers (by disabling internal updates during the read
process).
Lux Low-Byte Register 0x04
BIT 7 BIT 6 BIT 5 BIT 4 BIT 3 BIT 2 BIT 1 BIT 0
REGISTER
ADDRESS
UE3 UE2 UE1 UE0 UM7 UM6 UM5 UM4 0x05
BIT 7 BIT 6 BIT 5 BIT 4 BIT 3 BIT 2 BIT 1 BIT 0
REGISTER
ADDRESS
M3 M2 M1 M0 0x04
10
Maxim Integrated
MAX44009