Datasheet

MAX2029
High-Linearity, 815MHz to 1000MHz Upconversion/
Downconversion Mixer with LO Buffer/Switch
2 _______________________________________________________________________________________
ABSOLUTE MAXIMUM RATINGS
Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional
operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to
absolute maximum rating conditions for extended periods may affect device reliability.
V
CC
to GND...........................................................-0.3V to +5.5V
RF (RF is DC shorted to GND through a balun)..................50mA
LO1, LO2 to GND ..................................................-0.3V to +0.3V
IF+, IF- to GND ...........................................-0.3V to (V
CC
+ 0.3V)
TAP to GND ...........................................................-0.3V to +1.4V
LOSEL to GND ...........................................-0.3V to (V
CC
+ 0.3V)
LOBIAS to GND..........................................-0.3V to (V
CC
+ 0.3V)
RF, LO1, LO2 Input Power* ............................................+20dBm
Continuous Power Dissipation (T
C
= +85°C) (Note A)
20-Pin Thin QFN-EP................................................................5W
θ
JA
(Note B)....................................................................+38°C/W
θ
JC
.................................................................................+13°C/W
Operating Temperature Range (Note C) ....T
C
= -40°C to +85°C
Maximum Junction Temperature .....................................+150°C
Storage Temperature Range .............................-65°C to +150°C
Lead Temperature (soldering, 10s) .................................+300°C
Note A: Based on junction temperature T
J
= T
C
+ (θ
JC
x V
CC
x I
CC
). This formula can be used when the temperature of the
exposed paddle is known while the device is soldered down to a PCB. See the
Applications Information
section for details.
The junction temperature must not exceed +150°C.
Note B: Junction temperature T
J
= T
A
+ (θ
JA
x V
CC
x I
CC
). This formula can be used when the ambient temperature of the EV kit
PCB is known. The junction temperature must not exceed +150°C. See the
Applications Information
section for details.
Note C: T
C
is the temperature on the exposed paddle of the package. T
A
is the ambient temperature of the device and PCB.
AC ELECTRICAL CHARACTERISTICS
(
Typical Application Circuit
, C5 = 3.3pF, L1 and C4 not used, V
CC
= +4.75V to +5.25V, RF and LO ports are driven from 50Ω sources,
P
LO
= -3dBm to +3dBm, P
RF
= 0dBm, f
RF
= 815MHz to 1000MHz, f
LO
= 570MHz to 900MHz, f
IF
= 90MHz, f
LO
< f
RF
, T
C
= -40°C to
+85°C, unless otherwise noted. Typical values are at V
CC
= +5V, P
LO
= 0dBm, f
RF
= 920MHz, f
LO
= 830MHz, f
IF
= 90MHz,
T
C
= +25°C, unless otherwise noted.) (Note 1)
PARAMETER SYMBOL CONDITIONS MIN TYP MAX UNITS
RF Frequency Range f
RF
(Note 2) 815 1000 MHz
LO Frequency Range f
LO
(Note 2) 570 900 MHz
IF Frequency Range f
IF
External IF transformer dependence (Note 2) DC 250 MHz
LO Drive P
LO
(Note 2) -3 +3 dBm
LO2 selected, P
LO
= +3dBm, T
C
= +25°C,
f
RF
= 920MHz to 960MHz, f
LO
= 830MHz to
870MHz
48 53
LO1-to-LO2 Isolation (Note 3)
LO1 selected, P
LO
= +3dBm, T
C
= +25°C,
f
RF
= 920MHz to 960MHz, f
LO
= 830MHz to
870MHz
50 56
dB
Maximum LO Leakage at RF Port P
LO
= +3dBm -17 dBm
Maximum LO Leakage at IF Port
P
LO
= +3dBm, f
RF
= 920MHz to 960MHz,
f
LO
= 830MHz to 870MHz (Note 3)
-29.5 -23 dBm
*Maximum reliable continuous input power applied to the RF, LO, and IF ports of this device is +15dBm from a 50Ω source.
DC ELECTRICAL CHARACTERISTICS
(
Typical Application Circuit
, V
CC
= +4.75V to +5.25V, no RF signals applied, T
C
= -40°C to +85°C. IF+ and IF- are DC grounded through
an IF balun. Typical values are at V
CC
= +5V, T
C
= +25°C, unless otherwise noted.)
PARAMETER SYMBOL CONDITIONS MIN TYP MAX UNITS
Supply Voltage V
CC
4.75 5.00 5.25 V
Supply Current I
CC
85 100 mA
LOSEL Input Logic-Low V
IL
0.8 V
LOSEL Input Logic-High V
IH
2V
Input Current I
IH
, I
IL
±0.01 µA