Datasheet
MAX1070/MAX1071
Signal-to-Noise Ratio
For a waveform perfectly reconstructed from digital sam-
ples, signal-to-noise ratio (SNR) is the ratio of full-scale
analog input (RMS value) to the RMS quantization error
(residual error). The theoretical minimum analog-to-digital
noise is caused by quantization error, and results directly
from the ADC’s resolution (N bits):
SNR = (6.02 x N + 1.76)dB
In reality, there are other noise sources besides quantiza-
tion noise, including thermal noise, reference noise, clock
jitter, etc. Therefore, SNR is computed by taking the ratio
of the RMS signal to the RMS noise, which includes all
spectral components minus the fundamental, the first five
harmonics, and the DC offset.
Signal-to-Noise Plus Distortion
Signal-to-noise plus distortion (SINAD) is the ratio of the
fundamental input frequency’s RMS amplitude to the
RMS equivalent of all other ADC output signals:
SINAD(dB) = 20 x log (Signal
RMS
/ Noise
RMS
)
Effective Number of Bits
Effective number of bits (ENOB) indicates the global
accuracy of an ADC at a specific input frequency and
sampling rate. An ideal ADC’s error consists of quantiza-
tion noise only. With an input range equal to the full-scale
range of the ADC, calculate the ENOB as follows:
Total Harmonic Distortion
Total harmonic distortion (THD) is the ratio of the RMS
sum of the first five harmonics of the input signal to the
fundamental itself. This is expressed as:
where V
1
is the fundamental amplitude, and V
2
through
V
5
are the amplitudes of the 2nd- through 5th-order
harmonics.
Spurious-Free Dynamic Range
Spurious-free dynamic range (SFDR) is the ratio of the
RMS amplitude of the fundamental (maximum signal
component) to the RMS value of the next largest distor-
tion component.
Full-Power Bandwidth
Full-power bandwidth is the frequency at which the input
signal amplitude attenuates by 3dB for a full-scale input.
THD x
VVVV
V
log=
+++
⎛
⎝
⎜
⎜
⎜
⎞
⎠
⎟
⎟
⎟
20
2
2
3
2
4
2
5
2
1
ENOB
SINAD
( .)
.
=
− 176
602
1.5Msps, Single-Supply, Low-Power,
True-Differential, 10-Bit ADCs
16 ______________________________________________________________________________________
MAX1070
MAX1071
ADSP21_ _ _
V
L
SCLK
CNVST
DOUT
VDDINT
RCLK
RFS
TCLK
TFS
DR
Figure 19. Interfacing to the ADSP21_ _ _
10μF
0.1μF
10μF
0.1μF
V
DD
GND V
L
SUPPLIES
DGND V
L
DIGITAL
CIRCUITRY
V
DD GND RGND
V
L
MAX1070
MAX1071
Figure 20. Power-Supply Grounding Condition










