Datasheet
Table Of Contents
- 1 Hardware Description
- 1.1 Hardware Overview
- 1.2 Analog Front End (AFE)
- 1.3 Digital Computation Engine (CE)
- 1.4 80515 MPU Core
- 1.4.1 Memory Organization and Addressing
- 1.4.2 Special Function Registers (SFRs)
- 1.4.3 Generic 80515 Special Function Registers
- 1.4.4 Special Function Registers (SFRs) Specific to the 71M6531D/F and 71M6532D/F
- 1.4.5 Instruction Set
- 1.4.6 UARTs
- 1.4.7 Timers and Counters
- 1.4.8 WD Timer (Software Watchdog Timer)
- 1.4.9 Interrupts
- 1.5 On-Chip Resources
- 1.5.1 Oscillator
- 1.5.2 Internal Clocks
- 1.5.3 Real-Time Clock (RTC)
- 1.5.4 Temperature Sensor
- 1.5.5 Physical Memory
- 1.5.6 Optical Interface
- 1.5.7 Digital I/O – 71M6531D/F
- 1.5.8 Digital I/O – 71M6532D/F
- 1.5.9 Digital IO – Common Characteristics for 71M6531D/F and 71M6532D/F
- 1.5.10 LCD Drivers – 71M6531D/F
- 1.5.11 LCD Drivers – 71M6532D/F
- 1.5.12 LCD Drivers – Common Characteristics for 71M6531D/F and 71M6532D/F
- 1.5.13 Battery Monitor
- 1.5.14 EEPROM Interface
- 1.5.15 SPI Slave Port
- 1.5.16 Hardware Watchdog Timer
- 1.5.17 Test Ports (TMUXOUT pin)
- 2 Functional Description
- 3 Application Information
- 3.1 Connection of Sensors
- 3.2 Connecting 5-V Devices
- 3.3 Temperature Measurement
- 3.4 Temperature Compensation
- 3.5 Connecting LCDs
- 3.6 Connecting I2C EEPROMs
- 3.7 Connecting Three-Wire EEPROMs
- 3.8 UART0 (TX/RX)
- 3.9 Optical Interface (UART1)
- 3.10 Connecting the V1 Pin
- 3.11 Connecting the Reset Pin
- 3.12 Connecting the Emulator Port Pins
- 3.13 Connecting a Battery
- 3.14 Flash Programming
- 3.15 MPU Firmware
- 3.16 Crystal Oscillator
- 3.17 Meter Calibration
- 4 Firmware Interface
- 4.1 I/O RAM and SFR Map – Functional Order
- 4.2 I/O RAM Description – Alphabetical Order
- 4.3 CE Interface Description
- 5 Electrical Specifications
- 5.1 Absolute Maximum Ratings
- 5.2 Recommended External Components
- 5.3 Recommended Operating Conditions
- 5.4 Performance Specifications
- 5.4.1 Input Logic Levels
- 5.4.2 Output Logic Levels
- 5.4.3 Power-Fault Comparator
- 5.4.4 Battery Monitor
- 5.4.5 Supply Current
- 5.4.6 V3P3D Switch
- 5.4.7 2.5 V Voltage Regulator
- 5.4.8 Low-Power Voltage Regulator
- 5.4.9 Crystal Oscillator
- 5.4.10 LCD DAC
- 5.4.11 LCD Drivers
- 5.4.12 Optical Interface
- 5.4.13 Temperature Sensor
- 5.4.14 VREF
- 5.4.15 ADC Converter, V3P3A Referenced
- 5.5 Timing Specifications
- 5.6 Typical Performance Data
- 5.7 71M6531D/F Package
- 5.8 71M6532D/F Package
- 5.9 Pin Descriptions
- 6 Ordering Information
- 7 Related Information
- 8 Contact Information
- Appendix A: Acronyms
- Appendix B: Revision History

Data Sheet 71M6531D/F-71M6532D/F FDS 6531/6532 005
52 Rev 2
V3P3
V3P3 -
400mV
V3P3 - 10mV
VBIAS
0V
Battery
modes
Normal
operation,
WDT
enabled
WDT dis-
abled
V1
1.5.16 Hardware Watchdog Timer
An independent, robust, fixed-duration, watchdog timer (WDT) is included
in the 71M6531D/F and 71M6532D/F. It uses the RTC crystal oscillator as
its time base and must be refreshed by the MPU firmware at least every
1.5 seconds. When not refreshed on time, the WDT overflows and the part
is reset as if the RESET pin were pulled high, except that the I/O RAM bits
will be in the same state as after a wake-up from SLEEP or LCD modes
(see the I/O RAM description in Section 4.2 for a list of I/O RAM bit states
after RESET and wake-up). 4100 oscillator cycles (or 125 ms) after the
WDT overflow, the MPU will be launched from program address 0x0000.
A status bit, WD_OVF, is set when the WDT overflow occurs. This bit is
preserved in LCD mode (not in SLEEP mode) and can be read by the MPU
when WAKE rises to determine if the part is initializing after a WDT over-
flow event or after a power-up. After it is read, the MPU firmware must
clear WD_OVF. The WD_OVF bit is also cleared by the RESET pin.
There is no internal digital state that deactivates the WDT.
Figure 17: Functions defined by V1
The WDT can be disabled by tying the V1 pin to V3P3 (see Figure 17). Of course, this also deactivates
V1 power fault detection. Since there is no method in firmware to disable the crystal oscillator or the
WDT, it is guaranteed that whatever state the part might find itself in, upon watchdog overflow, the part
will be reset to a known state.
Asserting ICE_E will also deactivate the WDT. This is the only method that will work in BROWNOUT
mode. In normal operation, the WDT is reset by periodically writing a one to the WDT_RST bit. The
watchdog timer is also reset when the internal signal WAKE = 0 (see Section 2.5 Wake-Up Behavior).
If enabled with the IEN_WD_NROVF bit in I/O RAM, an interrupt occurs roughly 1 ms before the WDT resets
the chip. This can be used to determine the cause of a WDT reset since it allows the code to log its state
(e.g. the current PC value, loop counters, flags, etc.) before a WDT reset occurs.