User`s guide
Identifying Nonlinear ARX Models
For detailed information about the nlarx and idnlarx properties and values,
see the corresponding reference page.
For mo re information about validating models, see Chapter 8, “Model
Analysis”.
Note You do not need to construct the model object using idnlarx befo re
estimation.
You can also use pem to refine parameter estimates of an existing nonlinear
ARX m odel, as described in “Refining Nonlinear Black-Box Models” on page
4-28.
Example – Using nlarx to Estimate Nonlinear ARX Models
This example uses nlarx to estimate a nonlinear AR X model for the two-tank
system. The data for this system is described in “Tutorial – Identifying
Nonlinear Bl ack - B ox M odels U s i ng the GU I” in the System Identification
Toolbox Getting Started G uide.
Prepare th e d ata for estimation u sin g the following commands:
load twotankda ta
z = iddata(y, u, 0.2);
ze = z(1:1000); zv = z(10 01:3 000);
Estimate several m odels using diff erent model orders, delays, and
nonlinearity settings:
m1 = nlarx(ze,[2 2 1],'wav');
m2 = nlarx(ze,[2 2 3],wavenet);
m3 = nlarx(ze,[2 2 3],wavenet('num',8));
m4 = nlarx(ze,[2 2 3],wavenet('num',8),...
'nlr', [1 2]);
m5 = nlarx(ze,[2 2 3],sigmoidnet('num',14),...
'nlr',[1 2]);
4-13