User`s guide
Modified Covariance AR Estimator
5-314
5Modified Covariance AR Estimator
Purpose Compute an estimate of AR model parameters using the modified covariance
method.
Library Estimation / Parametric Estimation
Description The Modified Covariance AR Estimator block uses the modified covariance
method to fit an autoregressive (AR) model to the input data. This method
minimizes the forward and backward prediction errors in the least-squares
sense. The input is a frame of consecutive time samples, which is assumed to
be the output of an AR system driven by white noise. The block computes the
normalized estimate of the AR system parameters, A(z), independently for each
successive input.
The order, p, of the all-pole model is specified by the
Order parameter.
The top output,
A, contains the normalized estimate of the AR model
coefficients in descending powers of z,
[1 a(2) ... a(p+1)]
The scalar gain, G, is provided at the bottom output (G).
Dialog Box
Estimation order
The order of the AR model, p.
References Kay, S. M. Modern Spectral Estimation: Theory and Application. Englewood
Cliffs, NJ: Prentice-Hall, 1988.
Hz()
G
Az()
------------
G
1 a 2()z
1–
… ap 1+()z
p–
+++
-------------------------------------------------------------------------------==