User`s guide
Table Of Contents
- Preface
- Quick Start
- LTI Models
- Introduction
- Creating LTI Models
- LTI Properties
- Model Conversion
- Time Delays
- Simulink Block for LTI Systems
- References
- Operations on LTI Models
- Arrays of LTI Models
- Model Analysis Tools
- The LTI Viewer
- Introduction
- Getting Started Using the LTI Viewer: An Example
- The LTI Viewer Menus
- The Right-Click Menus
- The LTI Viewer Tools Menu
- Simulink LTI Viewer
- Control Design Tools
- The Root Locus Design GUI
- Introduction
- A Servomechanism Example
- Controller Design Using the Root Locus Design GUI
- Additional Root Locus Design GUI Features
- References
- Design Case Studies
- Reliable Computations
- Reference
- Category Tables
- acker
- append
- augstate
- balreal
- bode
- c2d
- canon
- care
- chgunits
- connect
- covar
- ctrb
- ctrbf
- d2c
- d2d
- damp
- dare
- dcgain
- delay2z
- dlqr
- dlyap
- drmodel, drss
- dsort
- dss
- dssdata
- esort
- estim
- evalfr
- feedback
- filt
- frd
- frdata
- freqresp
- gensig
- get
- gram
- hasdelay
- impulse
- initial
- inv
- isct, isdt
- isempty
- isproper
- issiso
- kalman
- kalmd
- lft
- lqgreg
- lqr
- lqrd
- lqry
- lsim
- ltiview
- lyap
- margin
- minreal
- modred
- ndims
- ngrid
- nichols
- norm
- nyquist
- obsv
- obsvf
- ord2
- pade
- parallel
- place
- pole
- pzmap
- reg
- reshape
- rlocfind
- rlocus
- rltool
- rmodel, rss
- series
- set
- sgrid
- sigma
- size
- sminreal
- ss
- ss2ss
- ssbal
- ssdata
- stack
- step
- tf
- tfdata
- totaldelay
- zero
- zgrid
- zpk
- zpkdata
- Index

Time Delays
2-55
channel delays. The resulting model has a minimum number of delays. When
this minimization takes place:
• All orpartof theI/O delaymatrixis absorbedinto the input andoutputdelay
vectors. This minimizes the total number of I/O delays.
• The input delays are transferred to output delays (or vice-versa), so as to
minimize the overall number of input and output channel delays.
Padé Approximation of Time Delays
The function pade computes rational approximations of time delays in
continuous-time LTI models. The syntax is
sysx = pade(sys,n)
where sys is a continuous-time model with delays, and the integer n specifies
the Padé approximation order. The resulting LTI model
sysx is of the same
type as
sys, but is delay free.
For models with multiple delays or a mix o f input, output, and I/O delays, y ou
can use the syntax
sysx = pade(sys,ni,no,nio)
where the vectors ni and no,andthematrixnio specify independent
approximation orders for each input, output, and I/O delay, respectively. Set
ni=[] if there are no input delays, and similarly f or no and nio.
For example, consider the “Distillation Column Example” on page 2-47. The
two-input, two-output transfer function in this example is
To compute a Padé approximation of H(s)using:
•A first-order approximation for the 1 second and 3 second delays
• A second-order approximation for the 7 second delay,
Hs()
12.8e
1s–
16.7e 1+
------------------------
18.9 e
3s–
–
21.0s 1+
-------------------------
6.6e
7s–
10.9s 1+
------------------------
19.4 e
3s–
–
14.4s 1+
-------------------------
=