User`s guide
Table Of Contents
- Preface
- Quick Start
- LTI Models
- Introduction
- Creating LTI Models
- LTI Properties
- Model Conversion
- Time Delays
- Simulink Block for LTI Systems
- References
- Operations on LTI Models
- Arrays of LTI Models
- Model Analysis Tools
- The LTI Viewer
- Introduction
- Getting Started Using the LTI Viewer: An Example
- The LTI Viewer Menus
- The Right-Click Menus
- The LTI Viewer Tools Menu
- Simulink LTI Viewer
- Control Design Tools
- The Root Locus Design GUI
- Introduction
- A Servomechanism Example
- Controller Design Using the Root Locus Design GUI
- Additional Root Locus Design GUI Features
- References
- Design Case Studies
- Reliable Computations
- Reference
- Category Tables
- acker
- append
- augstate
- balreal
- bode
- c2d
- canon
- care
- chgunits
- connect
- covar
- ctrb
- ctrbf
- d2c
- d2d
- damp
- dare
- dcgain
- delay2z
- dlqr
- dlyap
- drmodel, drss
- dsort
- dss
- dssdata
- esort
- estim
- evalfr
- feedback
- filt
- frd
- frdata
- freqresp
- gensig
- get
- gram
- hasdelay
- impulse
- initial
- inv
- isct, isdt
- isempty
- isproper
- issiso
- kalman
- kalmd
- lft
- lqgreg
- lqr
- lqrd
- lqry
- lsim
- ltiview
- lyap
- margin
- minreal
- modred
- ndims
- ngrid
- nichols
- norm
- nyquist
- obsv
- obsvf
- ord2
- pade
- parallel
- place
- pole
- pzmap
- reg
- reshape
- rlocfind
- rlocus
- rltool
- rmodel, rss
- series
- set
- sgrid
- sigma
- size
- sminreal
- ss
- ss2ss
- ssbal
- ssdata
- stack
- step
- tf
- tfdata
- totaldelay
- zero
- zgrid
- zpk
- zpkdata
- Index

2 LTI Models
2-22
Similarly,
z = zpk('z', 0.1);
H = [z/(z+0.1)/(z+0.2) ; (z^2+0.2*z+0.1)/(z^2+0.2*z+0.01)]
produces the single-input, two-output ZPK model
Zero/pole/gain from input to output...
z
#1: ---------------
(z+0.1) (z+0.2)
(z^2 + 0.2z + 0.1)
#2: ------------------
(z+0.1)^2
Sampling time: 0.1
Note that:
• The synta x
z = tf('z') is equivalent to z = tf('z',–1) and leaves the
sample time unspecified. The same applies to
z = zpk('z').
• Once you have defined
z as indicated above, any rational expressions in z
createsadiscrete-timemodelofthesametypeandwiththesamesample
time as
z.
Discrete Transfer Functions in DSP Format
In digital signal processing (DSP), it is customary to write discrete transfer
functions as rational expressions in and to order the numerator and
denominator coefficients in ascending powers of . For example, the
numerator and denominator of
would be specified as the row vectors
[1 0.5] and [1 2 3], respectively. When
the numerator and denominator have different degrees, this convention
clashes with the “descending powers of ” convention assumed by
tf (see
“Transfer Function Models” on page 2-8, or
tf on page 11-224). For example,
h = tf([1 0.5],[1 2 3])
z
1
–
z
1
–
Hz
1–
()
10.5z
1
–
+
12z
1–
3z
2–
++
----------------------------------------=
z