User`s guide
Table Of Contents
- Preface
- Quick Start
- LTI Models
- Introduction
- Creating LTI Models
- LTI Properties
- Model Conversion
- Time Delays
- Simulink Block for LTI Systems
- References
- Operations on LTI Models
- Arrays of LTI Models
- Model Analysis Tools
- The LTI Viewer
- Introduction
- Getting Started Using the LTI Viewer: An Example
- The LTI Viewer Menus
- The Right-Click Menus
- The LTI Viewer Tools Menu
- Simulink LTI Viewer
- Control Design Tools
- The Root Locus Design GUI
- Introduction
- A Servomechanism Example
- Controller Design Using the Root Locus Design GUI
- Additional Root Locus Design GUI Features
- References
- Design Case Studies
- Reliable Computations
- Reference
- Category Tables
- acker
- append
- augstate
- balreal
- bode
- c2d
- canon
- care
- chgunits
- connect
- covar
- ctrb
- ctrbf
- d2c
- d2d
- damp
- dare
- dcgain
- delay2z
- dlqr
- dlyap
- drmodel, drss
- dsort
- dss
- dssdata
- esort
- estim
- evalfr
- feedback
- filt
- frd
- frdata
- freqresp
- gensig
- get
- gram
- hasdelay
- impulse
- initial
- inv
- isct, isdt
- isempty
- isproper
- issiso
- kalman
- kalmd
- lft
- lqgreg
- lqr
- lqrd
- lqry
- lsim
- ltiview
- lyap
- margin
- minreal
- modred
- ndims
- ngrid
- nichols
- norm
- nyquist
- obsv
- obsvf
- ord2
- pade
- parallel
- place
- pole
- pzmap
- reg
- reshape
- rlocfind
- rlocus
- rltool
- rmodel, rss
- series
- set
- sgrid
- sigma
- size
- sminreal
- ss
- ss2ss
- ssbal
- ssdata
- stack
- step
- tf
- tfdata
- totaldelay
- zero
- zgrid
- zpk
- zpkdata
- Index

zpk
11-239
• s = zpk('s') to specify a ZPK model from a rational transfer function of the
Laplace variable,
s.
•
z = zpk('z',Ts) to specify a ZPK model with sample time Ts from arational
transfer function of the discrete-time variable,
z.
Once you specify either of these variables, you can specify ZPK models directly
as real-valued rational expressions in the variable
s or z.
To create a MIMO zero-pole-gain model, specify the zeros, poles, and gain of
each SISO entry of this model. In this case:
•
z and p arecellarraysofvectorswithasmanyrowsasoutputsandasmany
columns as inputs, and
k is a matrix with as many rows as outputs and as
many columns as inputs.
• The vectors
z{i,j} and p{i,j} specify the zeros and poles of the transfer
function from input
j to output i.
• k(i,j) specifies the (scalar) gain of the transfer function from input j to
output
i.
See below for a MIMO example.
sys = zpk(z,p,k,Ts) creates a discrete-time zero-pole-gain model with
sample time
Ts (in seconds). Set Ts = –1 or Ts = [] to leave the sample time
unspecified. The input arguments
z, p, k are as in the continuous-time case.
sys = zpk(M) specifies a static gain M.
sys = zpk(z,p,k,ltisys) creates a zero-pole-gain model with generic LTI
properties inherited from t he LTI model
ltisys (including the sample time).
See “Generic Properties” on page 2-26 for an overview of generic LTI
properties.
To create an array of ZPK models, use a
for loop, o r use multidimensional cell
arrays for
z and p, and a multidimensional array for k.
Any of the previous syntaxes can be followed by property name/property value
pairs.
'PropertyName',PropertyValue