User`s guide
Table Of Contents
- Preface
- Quick Start
- LTI Models
- Introduction
- Creating LTI Models
- LTI Properties
- Model Conversion
- Time Delays
- Simulink Block for LTI Systems
- References
- Operations on LTI Models
- Arrays of LTI Models
- Model Analysis Tools
- The LTI Viewer
- Introduction
- Getting Started Using the LTI Viewer: An Example
- The LTI Viewer Menus
- The Right-Click Menus
- The LTI Viewer Tools Menu
- Simulink LTI Viewer
- Control Design Tools
- The Root Locus Design GUI
- Introduction
- A Servomechanism Example
- Controller Design Using the Root Locus Design GUI
- Additional Root Locus Design GUI Features
- References
- Design Case Studies
- Reliable Computations
- Reference
- Category Tables
- acker
- append
- augstate
- balreal
- bode
- c2d
- canon
- care
- chgunits
- connect
- covar
- ctrb
- ctrbf
- d2c
- d2d
- damp
- dare
- dcgain
- delay2z
- dlqr
- dlyap
- drmodel, drss
- dsort
- dss
- dssdata
- esort
- estim
- evalfr
- feedback
- filt
- frd
- frdata
- freqresp
- gensig
- get
- gram
- hasdelay
- impulse
- initial
- inv
- isct, isdt
- isempty
- isproper
- issiso
- kalman
- kalmd
- lft
- lqgreg
- lqr
- lqrd
- lqry
- lsim
- ltiview
- lyap
- margin
- minreal
- modred
- ndims
- ngrid
- nichols
- norm
- nyquist
- obsv
- obsvf
- ord2
- pade
- parallel
- place
- pole
- pzmap
- reg
- reshape
- rlocfind
- rlocus
- rltool
- rmodel, rss
- series
- set
- sgrid
- sigma
- size
- sminreal
- ss
- ss2ss
- ssbal
- ssdata
- stack
- step
- tf
- tfdata
- totaldelay
- zero
- zgrid
- zpk
- zpkdata
- Index

ss2ss
11-215
11ss2ss
Purpose State coordinate transformation for state-space models
Syntax sysT = ss2ss(sys,T)
Description Given a state-space model sys with equations
(or their discrete-time counterpart),
ss2ss performs the similarity
transformation on the state vector and produces the equivalent
state-space model
sysT with equations.
sysT = ss2ss(sys,T) returns the transformed state-space model sysT given
sys and the state coordinate transformation T. The model sys must be in
state-space form and the matrix
T must be invertible. ss2ss is applicable to
both continuous- and di screte-time models.
Example Perform a similarity transform to improve the conditioning of the matrix.
T = balance(sys.a)
sysb = ss2ss(sys,inv(T))
See ssbal for a more direct approach.
See Also balreal Gramian-based I/O balancing
canon Canonical state-space realizat ions
ssbal Balancing o f state-space models using diagonal
similarity transformations
x
·
Ax Bu+=
yCxDu+=
xTx=
x
x
·
TAT
1–
xTBu+=
yCT
1–
xDu+=
A