User`s guide
Table Of Contents
- Preface
- Quick Start
- LTI Models
- Introduction
- Creating LTI Models
- LTI Properties
- Model Conversion
- Time Delays
- Simulink Block for LTI Systems
- References
- Operations on LTI Models
- Arrays of LTI Models
- Model Analysis Tools
- The LTI Viewer
- Introduction
- Getting Started Using the LTI Viewer: An Example
- The LTI Viewer Menus
- The Right-Click Menus
- The LTI Viewer Tools Menu
- Simulink LTI Viewer
- Control Design Tools
- The Root Locus Design GUI
- Introduction
- A Servomechanism Example
- Controller Design Using the Root Locus Design GUI
- Additional Root Locus Design GUI Features
- References
- Design Case Studies
- Reliable Computations
- Reference
- Category Tables
- acker
- append
- augstate
- balreal
- bode
- c2d
- canon
- care
- chgunits
- connect
- covar
- ctrb
- ctrbf
- d2c
- d2d
- damp
- dare
- dcgain
- delay2z
- dlqr
- dlyap
- drmodel, drss
- dsort
- dss
- dssdata
- esort
- estim
- evalfr
- feedback
- filt
- frd
- frdata
- freqresp
- gensig
- get
- gram
- hasdelay
- impulse
- initial
- inv
- isct, isdt
- isempty
- isproper
- issiso
- kalman
- kalmd
- lft
- lqgreg
- lqr
- lqrd
- lqry
- lsim
- ltiview
- lyap
- margin
- minreal
- modred
- ndims
- ngrid
- nichols
- norm
- nyquist
- obsv
- obsvf
- ord2
- pade
- parallel
- place
- pole
- pzmap
- reg
- reshape
- rlocfind
- rlocus
- rltool
- rmodel, rss
- series
- set
- sgrid
- sigma
- size
- sminreal
- ss
- ss2ss
- ssbal
- ssdata
- stack
- step
- tf
- tfdata
- totaldelay
- zero
- zgrid
- zpk
- zpkdata
- Index

rmodel, rss
11-189
11rmodel, rss
Purpose Generate stable random continuous test models
Syntax sys = rss(n)
sys = rss(n,p)
sys = rss(n,p,m)
sys = rss(n,p,m,s1,...,sn)
[num,den] = rmodel(n)
[A,B,C,D] = rmodel(n)
[A,B,C,D] = rmodel(n,p,m)
Description rss(n) produces a stable random n-th order model wit h one input and one
output and returns the model in the state-space object
sys.
rss(n,p) produces a random nth order stable model with one input and p
outputs, and rss(n,m,p) produces a random n-th order stable model with m
inputs and p outputs. The output sys is always a state-space model.
rss(n,p,m,s1,...,sn)produces an s1-by-...-by-sn array of ran dom n -th
order stable state-space models with
m inputs and p outputs.
Use
tf, frd,orzpk to convert the state-space object sys to transfer function,
frequency response, or zero-pole-gain form.
rmodel(n) produces a random n-th order stable model and returns either the
transfer function numerator
num and denominator den or the state-space
matrices
A, B, C,andD, depending on the number of output arguments. The
resulting model always has one input and one output.
[A,B,C,D] = rmodel(n,m,p) produces a stable random nth order state-space
model with
m inputs and p outputs.