User`s guide
Table Of Contents
- Preface
- Quick Start
- LTI Models
- Introduction
- Creating LTI Models
- LTI Properties
- Model Conversion
- Time Delays
- Simulink Block for LTI Systems
- References
- Operations on LTI Models
- Arrays of LTI Models
- Model Analysis Tools
- The LTI Viewer
- Introduction
- Getting Started Using the LTI Viewer: An Example
- The LTI Viewer Menus
- The Right-Click Menus
- The LTI Viewer Tools Menu
- Simulink LTI Viewer
- Control Design Tools
- The Root Locus Design GUI
- Introduction
- A Servomechanism Example
- Controller Design Using the Root Locus Design GUI
- Additional Root Locus Design GUI Features
- References
- Design Case Studies
- Reliable Computations
- Reference
- Category Tables
- acker
- append
- augstate
- balreal
- bode
- c2d
- canon
- care
- chgunits
- connect
- covar
- ctrb
- ctrbf
- d2c
- d2d
- damp
- dare
- dcgain
- delay2z
- dlqr
- dlyap
- drmodel, drss
- dsort
- dss
- dssdata
- esort
- estim
- evalfr
- feedback
- filt
- frd
- frdata
- freqresp
- gensig
- get
- gram
- hasdelay
- impulse
- initial
- inv
- isct, isdt
- isempty
- isproper
- issiso
- kalman
- kalmd
- lft
- lqgreg
- lqr
- lqrd
- lqry
- lsim
- ltiview
- lyap
- margin
- minreal
- modred
- ndims
- ngrid
- nichols
- norm
- nyquist
- obsv
- obsvf
- ord2
- pade
- parallel
- place
- pole
- pzmap
- reg
- reshape
- rlocfind
- rlocus
- rltool
- rmodel, rss
- series
- set
- sgrid
- sigma
- size
- sminreal
- ss
- ss2ss
- ssbal
- ssdata
- stack
- step
- tf
- tfdata
- totaldelay
- zero
- zgrid
- zpk
- zpkdata
- Index

Creating LTI Models
2-13
produces
Zero/pole/gain:
–2 s
--------------------
(s–2) (s^2 – 2s + 2)
You can also specify zero-pole-gain models as rational expressions in the
Laplace variable s by:
1 Defining the variable s as a ZPK model
s = zpk('s')
2 Entering the transfer function as a rational e xpression in s.
For example, once
s is defined with zpk,
H = –2s/((s – 2)*(s^2 + 2*s + 2));
returns the same ZP K model as
h = zpk([0], [2 –1–i –1+i ], –2);
Note: You need only define the ZPK variable s once. All subsequent rational
expressions of
s will be ZPK models, unless you convert the variable s to TF.
See “Model Conversion” on page 2-42 for more information on conversion to
other model types.
MIMO Zero-Pole-Gain Models
Just a s with TF models, you can also specify a MIMO ZPK model by
concatenation of its SISO entries (see “Model Interconnection Functions” on
page 3-16).
You can also use the command
zpk tospecifyMIMOZPKmodels.Thesyntax
to create a p-by-m MIMO zero-pole-gain model using
zpk is
H = zpk(Z,P,K)