User`s guide
Table Of Contents
- Preface
- Quick Start
- LTI Models
- Introduction
- Creating LTI Models
- LTI Properties
- Model Conversion
- Time Delays
- Simulink Block for LTI Systems
- References
- Operations on LTI Models
- Arrays of LTI Models
- Model Analysis Tools
- The LTI Viewer
- Introduction
- Getting Started Using the LTI Viewer: An Example
- The LTI Viewer Menus
- The Right-Click Menus
- The LTI Viewer Tools Menu
- Simulink LTI Viewer
- Control Design Tools
- The Root Locus Design GUI
- Introduction
- A Servomechanism Example
- Controller Design Using the Root Locus Design GUI
- Additional Root Locus Design GUI Features
- References
- Design Case Studies
- Reliable Computations
- Reference
- Category Tables
- acker
- append
- augstate
- balreal
- bode
- c2d
- canon
- care
- chgunits
- connect
- covar
- ctrb
- ctrbf
- d2c
- d2d
- damp
- dare
- dcgain
- delay2z
- dlqr
- dlyap
- drmodel, drss
- dsort
- dss
- dssdata
- esort
- estim
- evalfr
- feedback
- filt
- frd
- frdata
- freqresp
- gensig
- get
- gram
- hasdelay
- impulse
- initial
- inv
- isct, isdt
- isempty
- isproper
- issiso
- kalman
- kalmd
- lft
- lqgreg
- lqr
- lqrd
- lqry
- lsim
- ltiview
- lyap
- margin
- minreal
- modred
- ndims
- ngrid
- nichols
- norm
- nyquist
- obsv
- obsvf
- ord2
- pade
- parallel
- place
- pole
- pzmap
- reg
- reshape
- rlocfind
- rlocus
- rltool
- rmodel, rss
- series
- set
- sgrid
- sigma
- size
- sminreal
- ss
- ss2ss
- ssbal
- ssdata
- stack
- step
- tf
- tfdata
- totaldelay
- zero
- zgrid
- zpk
- zpkdata
- Index

pole
11-172
11pole
Purpose Compute the poles of an LTI system
Syntax p = pole(sys)
Description pole computes the poles p of the SISO or M IMO LTI model sys.
Algorithm For state-space models, the poles are the eigenvalues of the matrix, or the
generalized eigenvalues of in the descriptor case.
For S ISO t ransfer functions or zero-pole-gain models, the poles a re simply the
denominator roots (see
roots).
For MIMO transfer functions (or zero-pole-gain models), the poles are
computed as the union of the poles for each SISO entry. If s ome columns or
rows ha ve a common denominator, the roots of this denominator are counted
only once.
Limitations Multiple poles are numerically sensitive and cannot be computed to high
accuracy. A pole with multiplicity typically gives rise to a cluster of
computed poles distributed on a circle with center and radius of order
See Also damp Damping and natural frequency of system poles
esort, dsort Sort system poles
pzmap Pole-zero map
zero Compute (transmission) zeros
A
A
λ
E
–
λ
m
λ
ρ
eps
1 m
⁄
≈