User`s guide
Table Of Contents
- Preface
- Quick Start
- LTI Models
- Introduction
- Creating LTI Models
- LTI Properties
- Model Conversion
- Time Delays
- Simulink Block for LTI Systems
- References
- Operations on LTI Models
- Arrays of LTI Models
- Model Analysis Tools
- The LTI Viewer
- Introduction
- Getting Started Using the LTI Viewer: An Example
- The LTI Viewer Menus
- The Right-Click Menus
- The LTI Viewer Tools Menu
- Simulink LTI Viewer
- Control Design Tools
- The Root Locus Design GUI
- Introduction
- A Servomechanism Example
- Controller Design Using the Root Locus Design GUI
- Additional Root Locus Design GUI Features
- References
- Design Case Studies
- Reliable Computations
- Reference
- Category Tables
- acker
- append
- augstate
- balreal
- bode
- c2d
- canon
- care
- chgunits
- connect
- covar
- ctrb
- ctrbf
- d2c
- d2d
- damp
- dare
- dcgain
- delay2z
- dlqr
- dlyap
- drmodel, drss
- dsort
- dss
- dssdata
- esort
- estim
- evalfr
- feedback
- filt
- frd
- frdata
- freqresp
- gensig
- get
- gram
- hasdelay
- impulse
- initial
- inv
- isct, isdt
- isempty
- isproper
- issiso
- kalman
- kalmd
- lft
- lqgreg
- lqr
- lqrd
- lqry
- lsim
- ltiview
- lyap
- margin
- minreal
- modred
- ndims
- ngrid
- nichols
- norm
- nyquist
- obsv
- obsvf
- ord2
- pade
- parallel
- place
- pole
- pzmap
- reg
- reshape
- rlocfind
- rlocus
- rltool
- rmodel, rss
- series
- set
- sgrid
- sigma
- size
- sminreal
- ss
- ss2ss
- ssbal
- ssdata
- stack
- step
- tf
- tfdata
- totaldelay
- zero
- zgrid
- zpk
- zpkdata
- Index

2 LTI Models
2-12
while
E = tf
creates an empty transfer function.
Zero-Pole-Gain Models
This section explains how to specify continuous-time SISO and MIMO
zero-pole-gain models. The specification for discrete-time zero-pole-gain
models is a simple extension of the continuous-time case. See “Discrete-Time
Models” on page 2-20.
SISO Zero-Pole-Gain Models
Continuous-time SISO zero-pole-gain models are of the form
where is a real-valued scalar (the gain), and ,..., and ,..., are the
real or complex conjugate pairs of zeros and poles of the transfer function .
This model is closely related to the transfer function representation: the zeros
are simply the numerator roots, and the poles, the denominator roots.
There are two ways to specify SISO zero-pole-ga in models:
• Using the
zpk command
• As rational expressions in the Laplace variable s
The syntax to specify ZPK models directly using
zpk is
h = zpk(z,p,k)
where z and p are the vectors of zeros and poles, and k is the gain. This
produces a ZPK object
h that encapsulates the z, p,andkdata. For example,
typing
h = zpk(0, [1–i 1+i 2], –2)
hs() k
sz
1
–()
... sz
m
–()
sp
1
–()... sp
n
–()
-------------------------------------------------
=
k
z
1
z
m
p
1
p
n
hs
()