User`s guide
Table Of Contents
- Preface
- Quick Start
- LTI Models
- Introduction
- Creating LTI Models
- LTI Properties
- Model Conversion
- Time Delays
- Simulink Block for LTI Systems
- References
- Operations on LTI Models
- Arrays of LTI Models
- Model Analysis Tools
- The LTI Viewer
- Introduction
- Getting Started Using the LTI Viewer: An Example
- The LTI Viewer Menus
- The Right-Click Menus
- The LTI Viewer Tools Menu
- Simulink LTI Viewer
- Control Design Tools
- The Root Locus Design GUI
- Introduction
- A Servomechanism Example
- Controller Design Using the Root Locus Design GUI
- Additional Root Locus Design GUI Features
- References
- Design Case Studies
- Reliable Computations
- Reference
- Category Tables
- acker
- append
- augstate
- balreal
- bode
- c2d
- canon
- care
- chgunits
- connect
- covar
- ctrb
- ctrbf
- d2c
- d2d
- damp
- dare
- dcgain
- delay2z
- dlqr
- dlyap
- drmodel, drss
- dsort
- dss
- dssdata
- esort
- estim
- evalfr
- feedback
- filt
- frd
- frdata
- freqresp
- gensig
- get
- gram
- hasdelay
- impulse
- initial
- inv
- isct, isdt
- isempty
- isproper
- issiso
- kalman
- kalmd
- lft
- lqgreg
- lqr
- lqrd
- lqry
- lsim
- ltiview
- lyap
- margin
- minreal
- modred
- ndims
- ngrid
- nichols
- norm
- nyquist
- obsv
- obsvf
- ord2
- pade
- parallel
- place
- pole
- pzmap
- reg
- reshape
- rlocfind
- rlocus
- rltool
- rmodel, rss
- series
- set
- sgrid
- sigma
- size
- sminreal
- ss
- ss2ss
- ssbal
- ssdata
- stack
- step
- tf
- tfdata
- totaldelay
- zero
- zgrid
- zpk
- zpkdata
- Index

nyquist
11-157
When i nvoked with left-hand arguments
[re,im,w] = nyquist(sys)
[re,im] = nyquist(sys,w)
return the re al and imaginary parts of the frequ ency response at the
frequencies
w (in rad/sec). re and im are 3-D arrays with the frequency as last
dimension (see “Arguments” below for details).
Remark If sys is an FRD model, nyquist(sys,w), w can o nly include frequencies in
sys.frequency.
Arguments The output arguments re and im are 3-D arrays with dimensions
For SISO systems, the scalars
re(1,1,k) and im(1,1,k) are the real and
imaginary parts of the response at the frequency .
For MIMO systems with transfer function ,
re(:,:,k) and im(:,:,k)
give the real and imaginary parts of (both arrays with as many rows
as outputs and as many columns as inputs). Thus,
where is the transfer function from input to output .
Example Plot the Nyquist response of the system
number of outputs
()
number of i nputs
()×
length of
w()×
ω
k
w(k)=
re(1,1,k) Re hjω
k
()()=
im(1,1,k) Im hjω
k
()()=
Hs
()
Hj
ω
k
()
re(i,j,k) Re h
ij
jω
k
()()=
im(i,j,k) Im h
ij
jω
k
()()=
h
ij
j
i