User`s guide
Table Of Contents
- Preface
- Quick Start
- LTI Models
- Introduction
- Creating LTI Models
- LTI Properties
- Model Conversion
- Time Delays
- Simulink Block for LTI Systems
- References
- Operations on LTI Models
- Arrays of LTI Models
- Model Analysis Tools
- The LTI Viewer
- Introduction
- Getting Started Using the LTI Viewer: An Example
- The LTI Viewer Menus
- The Right-Click Menus
- The LTI Viewer Tools Menu
- Simulink LTI Viewer
- Control Design Tools
- The Root Locus Design GUI
- Introduction
- A Servomechanism Example
- Controller Design Using the Root Locus Design GUI
- Additional Root Locus Design GUI Features
- References
- Design Case Studies
- Reliable Computations
- Reference
- Category Tables
- acker
- append
- augstate
- balreal
- bode
- c2d
- canon
- care
- chgunits
- connect
- covar
- ctrb
- ctrbf
- d2c
- d2d
- damp
- dare
- dcgain
- delay2z
- dlqr
- dlyap
- drmodel, drss
- dsort
- dss
- dssdata
- esort
- estim
- evalfr
- feedback
- filt
- frd
- frdata
- freqresp
- gensig
- get
- gram
- hasdelay
- impulse
- initial
- inv
- isct, isdt
- isempty
- isproper
- issiso
- kalman
- kalmd
- lft
- lqgreg
- lqr
- lqrd
- lqry
- lsim
- ltiview
- lyap
- margin
- minreal
- modred
- ndims
- ngrid
- nichols
- norm
- nyquist
- obsv
- obsvf
- ord2
- pade
- parallel
- place
- pole
- pzmap
- reg
- reshape
- rlocfind
- rlocus
- rltool
- rmodel, rss
- series
- set
- sgrid
- sigma
- size
- sminreal
- ss
- ss2ss
- ssbal
- ssdata
- stack
- step
- tf
- tfdata
- totaldelay
- zero
- zgrid
- zpk
- zpkdata
- Index

modred
11-145
Next, the derivative of is set to zero and the resulting equation is solved for
. T he reduced-order model is given by
The discrete-time case is treated similarly by setting
Limitations With the ma tched DC gain method, must be inv ertible in continuous time,
and must be invertible in discrete time.
See Also balreal Input/output balancing of state-space models
minreal Minimal st ate-space realizations
x
·
1
x
·
2
A
11
A
12
A
21
A
22
x
1
x
2
B
1
B
2
u+=
y
C
1
C
2
xDu+=
x
2
x
1
x
·
1
A
11
A
12
A
22
1
–
A
21
–[]x
1
B
1
A
12
A
22
1
–
B
2
–[]u+=
yC
1
C
2
A
22
1–
A
21
–[]xDC
2
A
22
1–
B
2
–[]u+=
x
2
n1
+[]
x
2
n
[]=
A
22
IA
22
–