User`s guide
Table Of Contents
- Preface
- Quick Start
- LTI Models
- Introduction
- Creating LTI Models
- LTI Properties
- Model Conversion
- Time Delays
- Simulink Block for LTI Systems
- References
- Operations on LTI Models
- Arrays of LTI Models
- Model Analysis Tools
- The LTI Viewer
- Introduction
- Getting Started Using the LTI Viewer: An Example
- The LTI Viewer Menus
- The Right-Click Menus
- The LTI Viewer Tools Menu
- Simulink LTI Viewer
- Control Design Tools
- The Root Locus Design GUI
- Introduction
- A Servomechanism Example
- Controller Design Using the Root Locus Design GUI
- Additional Root Locus Design GUI Features
- References
- Design Case Studies
- Reliable Computations
- Reference
- Category Tables
- acker
- append
- augstate
- balreal
- bode
- c2d
- canon
- care
- chgunits
- connect
- covar
- ctrb
- ctrbf
- d2c
- d2d
- damp
- dare
- dcgain
- delay2z
- dlqr
- dlyap
- drmodel, drss
- dsort
- dss
- dssdata
- esort
- estim
- evalfr
- feedback
- filt
- frd
- frdata
- freqresp
- gensig
- get
- gram
- hasdelay
- impulse
- initial
- inv
- isct, isdt
- isempty
- isproper
- issiso
- kalman
- kalmd
- lft
- lqgreg
- lqr
- lqrd
- lqry
- lsim
- ltiview
- lyap
- margin
- minreal
- modred
- ndims
- ngrid
- nichols
- norm
- nyquist
- obsv
- obsvf
- ord2
- pade
- parallel
- place
- pole
- pzmap
- reg
- reshape
- rlocfind
- rlocus
- rltool
- rmodel, rss
- series
- set
- sgrid
- sigma
- size
- sminreal
- ss
- ss2ss
- ssbal
- ssdata
- stack
- step
- tf
- tfdata
- totaldelay
- zero
- zgrid
- zpk
- zpkdata
- Index

lqry
11-125
11lqry
Purpose Linear-quadratic (LQ) state-feedback regulator with output weighting
Syntax [K,S,e] = lqry(sys,Q,R)
[K,S,e] = lqry(sys,Q,R,N)
Description Given the plant
or its discrete-time counterpart,
lqry designs a state-feedback control
that minimizes the quadratic cost function with output weighting
(or its discrete-time counterpart). The function
lqry is equivalent to lqr or
dlqr with weighting matrices:
[K,S,e] = lqry(sys,Q,R,N) returns the optimal gain matrix K, the Riccati
solution
S, and the closed-loop eigenvalues e = eig(A-B*K). The state-space
model
sys specifies the continuous- or discrete-time plant data .
The default value
N=0 is assumed when N is omitted.
Example See “LQG Design for the x-Axis” on page 9-34 for an example.
Limitations The dat a must s atisfy the requirements for lqr or dlqr.
See Also lqr S tate-feedback LQ regulator for continuous plant
dlqr State-feedback LQ regulator for discrete plant
kalman Kalman estimator design
lqgreg Form LQG regulator
x
·
Ax Bu+=
yCxDu+=
uKx
–=
Ju() y
T
Qy u
T
Ru 2y
T
Nu++()td
0
∞
∫
=
QN
N
T
R
C
T
0
D
T
I
QN
N
T
R
CD
0 I
=
ABCD
,,,()
ABQRN,,,,