User`s guide
Table Of Contents
- Preface
- Quick Start
- LTI Models
- Introduction
- Creating LTI Models
- LTI Properties
- Model Conversion
- Time Delays
- Simulink Block for LTI Systems
- References
- Operations on LTI Models
- Arrays of LTI Models
- Model Analysis Tools
- The LTI Viewer
- Introduction
- Getting Started Using the LTI Viewer: An Example
- The LTI Viewer Menus
- The Right-Click Menus
- The LTI Viewer Tools Menu
- Simulink LTI Viewer
- Control Design Tools
- The Root Locus Design GUI
- Introduction
- A Servomechanism Example
- Controller Design Using the Root Locus Design GUI
- Additional Root Locus Design GUI Features
- References
- Design Case Studies
- Reliable Computations
- Reference
- Category Tables
- acker
- append
- augstate
- balreal
- bode
- c2d
- canon
- care
- chgunits
- connect
- covar
- ctrb
- ctrbf
- d2c
- d2d
- damp
- dare
- dcgain
- delay2z
- dlqr
- dlyap
- drmodel, drss
- dsort
- dss
- dssdata
- esort
- estim
- evalfr
- feedback
- filt
- frd
- frdata
- freqresp
- gensig
- get
- gram
- hasdelay
- impulse
- initial
- inv
- isct, isdt
- isempty
- isproper
- issiso
- kalman
- kalmd
- lft
- lqgreg
- lqr
- lqrd
- lqry
- lsim
- ltiview
- lyap
- margin
- minreal
- modred
- ndims
- ngrid
- nichols
- norm
- nyquist
- obsv
- obsvf
- ord2
- pade
- parallel
- place
- pole
- pzmap
- reg
- reshape
- rlocfind
- rlocus
- rltool
- rmodel, rss
- series
- set
- sgrid
- sigma
- size
- sminreal
- ss
- ss2ss
- ssbal
- ssdata
- stack
- step
- tf
- tfdata
- totaldelay
- zero
- zgrid
- zpk
- zpkdata
- Index

lqgreg
11-119
• Continuous regulator for continuous plant: use lqr or lqry and kalman.
• Discrete regulator for discrete plant: use
dlqr or lqry and kalman.
• Discrete regulator for continuous plant: use
lqrd and kalmd.
In discrete time,
lqgreg produces the regulator
bydefault(see“Description”).Toformthe“current”LQGregulat orinstead,use
the syntax
rlqg = lqgreg(kest,k,'current')
This syntax is meaningful only for discrete-time problems.
rlqg = lqgreg(kest,k,controls) handles estimators that ha ve access to
additional known plant inputs . The index vector
controls then specifies
which estimator inputs are the controls , and the resulting LQG regulator
rlqg has and as inputs (see figure below).
Note: Always use positive feedback to connect the LQG regulator to the
plant.
un[] Kx
ˆ
nn 1–[]–=
un[] Kx
ˆ
nn[]–=
u
d
u
u
d
y
v