User`s guide
Table Of Contents
- Preface
- Quick Start
- LTI Models
- Introduction
- Creating LTI Models
- LTI Properties
- Model Conversion
- Time Delays
- Simulink Block for LTI Systems
- References
- Operations on LTI Models
- Arrays of LTI Models
- Model Analysis Tools
- The LTI Viewer
- Introduction
- Getting Started Using the LTI Viewer: An Example
- The LTI Viewer Menus
- The Right-Click Menus
- The LTI Viewer Tools Menu
- Simulink LTI Viewer
- Control Design Tools
- The Root Locus Design GUI
- Introduction
- A Servomechanism Example
- Controller Design Using the Root Locus Design GUI
- Additional Root Locus Design GUI Features
- References
- Design Case Studies
- Reliable Computations
- Reference
- Category Tables
- acker
- append
- augstate
- balreal
- bode
- c2d
- canon
- care
- chgunits
- connect
- covar
- ctrb
- ctrbf
- d2c
- d2d
- damp
- dare
- dcgain
- delay2z
- dlqr
- dlyap
- drmodel, drss
- dsort
- dss
- dssdata
- esort
- estim
- evalfr
- feedback
- filt
- frd
- frdata
- freqresp
- gensig
- get
- gram
- hasdelay
- impulse
- initial
- inv
- isct, isdt
- isempty
- isproper
- issiso
- kalman
- kalmd
- lft
- lqgreg
- lqr
- lqrd
- lqry
- lsim
- ltiview
- lyap
- margin
- minreal
- modred
- ndims
- ngrid
- nichols
- norm
- nyquist
- obsv
- obsvf
- ord2
- pade
- parallel
- place
- pole
- pzmap
- reg
- reshape
- rlocfind
- rlocus
- rltool
- rmodel, rss
- series
- set
- sgrid
- sigma
- size
- sminreal
- ss
- ss2ss
- ssbal
- ssdata
- stack
- step
- tf
- tfdata
- totaldelay
- zero
- zgrid
- zpk
- zpkdata
- Index

kalman
11-109
the output and state estimates and . Note that estimates the true plant
output
Discrete-Time Estimation
Given the discrete plant
and the noise covariance data
the Kalman estimator has equations
y
ˆ
x
ˆ
y
ˆ
yCxDuHw
++=
w
u
v
+
y
v
x
ˆ
Plant
y
Kalman
filter
u
y
ˆ
(Measurement noise)
Kalman estimator
xn 1
+[]
Ax n
[]
Bu n
[]
Gw n
[]++=
y
v
n[] Cx n[] Du n[] Hw n[] vn[]++ +=
Ewn[]wn[]
T
()Q,=Evn[]vn[]
T
()R=,Ewn[]vn[]
T
()N=
x
ˆ
n1n+[]Ax
ˆ
nn 1–[]Bu n[] Ly
v
n[] Cx
ˆ
nn 1–[]Du n[]––()++=
y
ˆ
nn[]
x
ˆ
nn[]
CI MC–()
IMC–
x
ˆ
nn 1–[]
ICM–()DCM
MD– M
un[]
y
v
n[]
+=