User`s guide
Table Of Contents
- Preface
- Quick Start
- LTI Models
- Introduction
- Creating LTI Models
- LTI Properties
- Model Conversion
- Time Delays
- Simulink Block for LTI Systems
- References
- Operations on LTI Models
- Arrays of LTI Models
- Model Analysis Tools
- The LTI Viewer
- Introduction
- Getting Started Using the LTI Viewer: An Example
- The LTI Viewer Menus
- The Right-Click Menus
- The LTI Viewer Tools Menu
- Simulink LTI Viewer
- Control Design Tools
- The Root Locus Design GUI
- Introduction
- A Servomechanism Example
- Controller Design Using the Root Locus Design GUI
- Additional Root Locus Design GUI Features
- References
- Design Case Studies
- Reliable Computations
- Reference
- Category Tables
- acker
- append
- augstate
- balreal
- bode
- c2d
- canon
- care
- chgunits
- connect
- covar
- ctrb
- ctrbf
- d2c
- d2d
- damp
- dare
- dcgain
- delay2z
- dlqr
- dlyap
- drmodel, drss
- dsort
- dss
- dssdata
- esort
- estim
- evalfr
- feedback
- filt
- frd
- frdata
- freqresp
- gensig
- get
- gram
- hasdelay
- impulse
- initial
- inv
- isct, isdt
- isempty
- isproper
- issiso
- kalman
- kalmd
- lft
- lqgreg
- lqr
- lqrd
- lqry
- lsim
- ltiview
- lyap
- margin
- minreal
- modred
- ndims
- ngrid
- nichols
- norm
- nyquist
- obsv
- obsvf
- ord2
- pade
- parallel
- place
- pole
- pzmap
- reg
- reshape
- rlocfind
- rlocus
- rltool
- rmodel, rss
- series
- set
- sgrid
- sigma
- size
- sminreal
- ss
- ss2ss
- ssbal
- ssdata
- stack
- step
- tf
- tfdata
- totaldelay
- zero
- zgrid
- zpk
- zpkdata
- Index

Introduction
2-5
Precedence Rules
Operations like addition and commands like feedback operate on more than
one LTI model at a time. If these LTI models are represented as LTI objects of
different types (for example, the first operand is TF and the second operand is
SS), it is not obvious what type (for example, TF or SS) the resulting model
should be. Such type conflicts are resolved by precedencerules. Specifically, TF,
ZPK, SS, and FRD objects are ranked according to the precedence hierarchy.
Thus ZPK takes precedence over TF, SS takes precedence over both TF and
ZPK, and FRD takes precedence over all three. In other words, any operation
involving t wo or more LTI models produces:
• An FRD object if at least one operand is an FRD object
• An SS object if no operand is an FRD object and at least one operand is an
SS object
• A ZPK object if no operand is an FRD or SS object and at least one is a n ZPK
object
• A TF object only if all operands are TF objects
Operations on systems of different types work as follows: the resulting type is
determinedby theprecedence rules,and alloperands arefirst convertedto this
type before performing the operation.
Viewing LTI Systems As Matrices
In the frequency domain, an LTI system is represented by the linear input/
output map
This map is characterized by its transfer matrix H, a function of either the
Laplace or Z-transform variable. The transfer matrix H m aps inputs to
outputs, so there are as many columns as inputs and as many rows as outputs.
If you think of LTI systems in terms of (transfer) matrices, certain basic
operations on LTI systems are naturally expressed with a matrix-like syntax.
FRD>SS>ZPK>TF
yHu
=