User`s guide
Table Of Contents
- Preface
- Quick Start
- LTI Models
- Introduction
- Creating LTI Models
- LTI Properties
- Model Conversion
- Time Delays
- Simulink Block for LTI Systems
- References
- Operations on LTI Models
- Arrays of LTI Models
- Model Analysis Tools
- The LTI Viewer
- Introduction
- Getting Started Using the LTI Viewer: An Example
- The LTI Viewer Menus
- The Right-Click Menus
- The LTI Viewer Tools Menu
- Simulink LTI Viewer
- Control Design Tools
- The Root Locus Design GUI
- Introduction
- A Servomechanism Example
- Controller Design Using the Root Locus Design GUI
- Additional Root Locus Design GUI Features
- References
- Design Case Studies
- Reliable Computations
- Reference
- Category Tables
- acker
- append
- augstate
- balreal
- bode
- c2d
- canon
- care
- chgunits
- connect
- covar
- ctrb
- ctrbf
- d2c
- d2d
- damp
- dare
- dcgain
- delay2z
- dlqr
- dlyap
- drmodel, drss
- dsort
- dss
- dssdata
- esort
- estim
- evalfr
- feedback
- filt
- frd
- frdata
- freqresp
- gensig
- get
- gram
- hasdelay
- impulse
- initial
- inv
- isct, isdt
- isempty
- isproper
- issiso
- kalman
- kalmd
- lft
- lqgreg
- lqr
- lqrd
- lqry
- lsim
- ltiview
- lyap
- margin
- minreal
- modred
- ndims
- ngrid
- nichols
- norm
- nyquist
- obsv
- obsvf
- ord2
- pade
- parallel
- place
- pole
- pzmap
- reg
- reshape
- rlocfind
- rlocus
- rltool
- rmodel, rss
- series
- set
- sgrid
- sigma
- size
- sminreal
- ss
- ss2ss
- ssbal
- ssdata
- stack
- step
- tf
- tfdata
- totaldelay
- zero
- zgrid
- zpk
- zpkdata
- Index

gram
11-92
tocompute thegramians ofa continuousor discretesystem.The LTImodel sys
must b e in state-space form.
Algorithm The controllability gramian is obtained by solving the continuous-time
Lyapunov equation
or its discrete-time counterpart
Similarly, the observability gramian solves the Lyapunov equation
in continuous time, a nd the Lyapunov equation
in discrete time.
Limitations The matrix must be stable (all eigenvalues have negative real part in
continuous time, and magnitude strictly less than one in discrete time).
See Also balreal Gramian-based balancing of state-space realizations
ctrb Controllability matrix
lyap, dlyap Lyapunov equation solvers
obsv Observability matrix
References [1] K ailath, T., Linear Systems, Prentice-Hall, 1980.
W
c
AW
c
W
c
A
T
BB
T
++ 0=
AW
c
A
T
W
c
– BB
T
+ 0=
W
o
A
T
W
o
W
o
AC
T
C++ 0=
A
T
W
o
AW
o
– C
T
C+ 0=
A