User`s guide
Table Of Contents
- Preface
- Quick Start
- LTI Models
- Introduction
- Creating LTI Models
- LTI Properties
- Model Conversion
- Time Delays
- Simulink Block for LTI Systems
- References
- Operations on LTI Models
- Arrays of LTI Models
- Model Analysis Tools
- The LTI Viewer
- Introduction
- Getting Started Using the LTI Viewer: An Example
- The LTI Viewer Menus
- The Right-Click Menus
- The LTI Viewer Tools Menu
- Simulink LTI Viewer
- Control Design Tools
- The Root Locus Design GUI
- Introduction
- A Servomechanism Example
- Controller Design Using the Root Locus Design GUI
- Additional Root Locus Design GUI Features
- References
- Design Case Studies
- Reliable Computations
- Reference
- Category Tables
- acker
- append
- augstate
- balreal
- bode
- c2d
- canon
- care
- chgunits
- connect
- covar
- ctrb
- ctrbf
- d2c
- d2d
- damp
- dare
- dcgain
- delay2z
- dlqr
- dlyap
- drmodel, drss
- dsort
- dss
- dssdata
- esort
- estim
- evalfr
- feedback
- filt
- frd
- frdata
- freqresp
- gensig
- get
- gram
- hasdelay
- impulse
- initial
- inv
- isct, isdt
- isempty
- isproper
- issiso
- kalman
- kalmd
- lft
- lqgreg
- lqr
- lqrd
- lqry
- lsim
- ltiview
- lyap
- margin
- minreal
- modred
- ndims
- ngrid
- nichols
- norm
- nyquist
- obsv
- obsvf
- ord2
- pade
- parallel
- place
- pole
- pzmap
- reg
- reshape
- rlocfind
- rlocus
- rltool
- rmodel, rss
- series
- set
- sgrid
- sigma
- size
- sminreal
- ss
- ss2ss
- ssbal
- ssdata
- stack
- step
- tf
- tfdata
- totaldelay
- zero
- zgrid
- zpk
- zpkdata
- Index

filt
11-78
MIMO transfer functions are regarded as arrays of SISO transfer functions
(one per I/O channel), each of which is characterized by its numerator and
denominator. The input arguments
num and den a re then cell arrays of row
vectors such that:
•
num and den have as many rows as outputs and as many columns as inputs.
• Their entries
num{i,j} and den{i,j} specify the numerat or and
denominator of the transfer function from input
j to output i.
If all SISO entries have the same denominator, you can also set
den to the row
vector representation of this common denominator. See also “MIMO Transfer
Function Models” on page 2-10 for alternative ways to specify MIMO transfer
functions.
Remark filt behaves as tf with the Variable property set to 'z^–1' or 'q'.Seetf
entry below for details.
Example Typing the commands
num = {1 , [1 0.3]}
den = {[1 1 2] ,[5 2]}
H = filt(num,den,'inputname',{'channel1' 'channel2'})
creates the two-input digital filter
with unspecified sample time and input names
'channel1' and 'channel2'.
See Also tf Create transfer functions
zpk Create zero-pole-gain models
ss Create state-space models
ij
,()
Hz
1–
()
1
1z
1–
2z
2–
++
------------------------------------
10.3z
1–
+
52z
1–
+
--------------------------
=