User`s guide
Table Of Contents
- Preface
- Quick Start
- LTI Models
- Introduction
- Creating LTI Models
- LTI Properties
- Model Conversion
- Time Delays
- Simulink Block for LTI Systems
- References
- Operations on LTI Models
- Arrays of LTI Models
- Model Analysis Tools
- The LTI Viewer
- Introduction
- Getting Started Using the LTI Viewer: An Example
- The LTI Viewer Menus
- The Right-Click Menus
- The LTI Viewer Tools Menu
- Simulink LTI Viewer
- Control Design Tools
- The Root Locus Design GUI
- Introduction
- A Servomechanism Example
- Controller Design Using the Root Locus Design GUI
- Additional Root Locus Design GUI Features
- References
- Design Case Studies
- Reliable Computations
- Reference
- Category Tables
- acker
- append
- augstate
- balreal
- bode
- c2d
- canon
- care
- chgunits
- connect
- covar
- ctrb
- ctrbf
- d2c
- d2d
- damp
- dare
- dcgain
- delay2z
- dlqr
- dlyap
- drmodel, drss
- dsort
- dss
- dssdata
- esort
- estim
- evalfr
- feedback
- filt
- frd
- frdata
- freqresp
- gensig
- get
- gram
- hasdelay
- impulse
- initial
- inv
- isct, isdt
- isempty
- isproper
- issiso
- kalman
- kalmd
- lft
- lqgreg
- lqr
- lqrd
- lqry
- lsim
- ltiview
- lyap
- margin
- minreal
- modred
- ndims
- ngrid
- nichols
- norm
- nyquist
- obsv
- obsvf
- ord2
- pade
- parallel
- place
- pole
- pzmap
- reg
- reshape
- rlocfind
- rlocus
- rltool
- rmodel, rss
- series
- set
- sgrid
- sigma
- size
- sminreal
- ss
- ss2ss
- ssbal
- ssdata
- stack
- step
- tf
- tfdata
- totaldelay
- zero
- zgrid
- zpk
- zpkdata
- Index

feedback
11-76
Example 2
Consider a state-space plant P with five inp uts and four outputs and a
state-spacefeedbackcontroller
K with threeinputsandtwo outputs.T o connect
outputs 1, 3, and 4 of the plant to the controller i nputs, and the controller
outputs to inputs 4 and 2 of the plant, use
feedin = [4 2];
feedout = [1 3 4];
Cloop = feedback(P,K,feedin,feedout)
Example 3
You can form the following negative-feedback loops
by
Cloop = feedback(G,1) % left diagram
Cloop = feedback(1,G) % right diagram
Limitations The feedback connection should be free of algebraic loop. If and are the
feedthrough m atrices of
sys1 and sys2, this condition is equivalent to:
• nonsingular when using negative feedback
• nonsingular when using positive feedback.
See Also star Star product of LTI systems (LFT connection)
series Series connection
parallel Paral lel connection
connect Derive state-space model for block diagram
interconnection
G
G
D
1
D
2
ID
1
D
2
+
ID
1
D
2
–