User`s guide
Table Of Contents
- Preface
- Quick Start
- LTI Models
- Introduction
- Creating LTI Models
- LTI Properties
- Model Conversion
- Time Delays
- Simulink Block for LTI Systems
- References
- Operations on LTI Models
- Arrays of LTI Models
- Model Analysis Tools
- The LTI Viewer
- Introduction
- Getting Started Using the LTI Viewer: An Example
- The LTI Viewer Menus
- The Right-Click Menus
- The LTI Viewer Tools Menu
- Simulink LTI Viewer
- Control Design Tools
- The Root Locus Design GUI
- Introduction
- A Servomechanism Example
- Controller Design Using the Root Locus Design GUI
- Additional Root Locus Design GUI Features
- References
- Design Case Studies
- Reliable Computations
- Reference
- Category Tables
- acker
- append
- augstate
- balreal
- bode
- c2d
- canon
- care
- chgunits
- connect
- covar
- ctrb
- ctrbf
- d2c
- d2d
- damp
- dare
- dcgain
- delay2z
- dlqr
- dlyap
- drmodel, drss
- dsort
- dss
- dssdata
- esort
- estim
- evalfr
- feedback
- filt
- frd
- frdata
- freqresp
- gensig
- get
- gram
- hasdelay
- impulse
- initial
- inv
- isct, isdt
- isempty
- isproper
- issiso
- kalman
- kalmd
- lft
- lqgreg
- lqr
- lqrd
- lqry
- lsim
- ltiview
- lyap
- margin
- minreal
- modred
- ndims
- ngrid
- nichols
- norm
- nyquist
- obsv
- obsvf
- ord2
- pade
- parallel
- place
- pole
- pzmap
- reg
- reshape
- rlocfind
- rlocus
- rltool
- rmodel, rss
- series
- set
- sgrid
- sigma
- size
- sminreal
- ss
- ss2ss
- ssbal
- ssdata
- stack
- step
- tf
- tfdata
- totaldelay
- zero
- zgrid
- zpk
- zpkdata
- Index

evalfr
11-72
11evalfr
Purpose Evaluate frequency response at a single (complex) frequency
Syntax frsp = evalfr(sys,f)
Description frsp = evalfr(sys,f) evaluates the transfer function of the TF, SS, or ZPK
model
sys at the complex number f. For state-space m odels with data
,theresultis
evalfr is a simplified version of freqresp meant for quick evaluation of the
response at a single point. Use
freqresp to compute the frequency response
over a set of frequencies.
Example To evaluate the discrete-time t ransfer function
at , type
H = tf([1 –1],[1 1 1],–1)
z = 1+j
evalfr(H,z)
ans =
2.3077e–01 + 1.5385e–01i
Limitations The response is not finite when f is a pole of sys.
See Also bode Bode frequency response
freqresp Frequency response o ver a set of frequencies
sigma Singular value respo nse
ABCD
,,,()
Hf() DCfIA–()
1
–
B+=
Hz()
z 1
–
z
2
z 1++
------------------------=
z 1 j
+=