User`s guide
Table Of Contents
- Preface
- Quick Start
- LTI Models
- Introduction
- Creating LTI Models
- LTI Properties
- Model Conversion
- Time Delays
- Simulink Block for LTI Systems
- References
- Operations on LTI Models
- Arrays of LTI Models
- Model Analysis Tools
- The LTI Viewer
- Introduction
- Getting Started Using the LTI Viewer: An Example
- The LTI Viewer Menus
- The Right-Click Menus
- The LTI Viewer Tools Menu
- Simulink LTI Viewer
- Control Design Tools
- The Root Locus Design GUI
- Introduction
- A Servomechanism Example
- Controller Design Using the Root Locus Design GUI
- Additional Root Locus Design GUI Features
- References
- Design Case Studies
- Reliable Computations
- Reference
- Category Tables
- acker
- append
- augstate
- balreal
- bode
- c2d
- canon
- care
- chgunits
- connect
- covar
- ctrb
- ctrbf
- d2c
- d2d
- damp
- dare
- dcgain
- delay2z
- dlqr
- dlyap
- drmodel, drss
- dsort
- dss
- dssdata
- esort
- estim
- evalfr
- feedback
- filt
- frd
- frdata
- freqresp
- gensig
- get
- gram
- hasdelay
- impulse
- initial
- inv
- isct, isdt
- isempty
- isproper
- issiso
- kalman
- kalmd
- lft
- lqgreg
- lqr
- lqrd
- lqry
- lsim
- ltiview
- lyap
- margin
- minreal
- modred
- ndims
- ngrid
- nichols
- norm
- nyquist
- obsv
- obsvf
- ord2
- pade
- parallel
- place
- pole
- pzmap
- reg
- reshape
- rlocfind
- rlocus
- rltool
- rmodel, rss
- series
- set
- sgrid
- sigma
- size
- sminreal
- ss
- ss2ss
- ssbal
- ssdata
- stack
- step
- tf
- tfdata
- totaldelay
- zero
- zgrid
- zpk
- zpkdata
- Index

dlqr
11-59
11dlqr
Purpose Design linear-quadratic (LQ) state-feedback regulator for discrete-time plant
Syntax [K,S,e] = dlqr(a,b,Q,R)
[K,S,e] = dlqr(a,b,Q,R,N)
Description [K,S,e] = dlqr(a,b,Q,R,N) calculates the optimal gain matrix K such that
the state-feedback law
minimizes the quadratic cost function
for the discrete-time state-space mode
l
The default value
N=0 is assumed when N is omitted.
In addition to the state-feedback gain
K, dlqr returns the solution S of the
associated discrete-time Riccati equation
and the closed-loop eigenvalues
e = eig(a-b*K). Note that is derived from
by
Limitations The problem data must satisfy:
• The pair is stabilizable.
• and .
• has no unobservable mode on the unit circle.
See Also dare Solve discrete Riccati equations
lqgreg LQG regulator
un
[]
Kx n
[]–=
Ju() xn[]
T
Qx n[] un[]
T
Ru n[] 2xn[]
T
Nu n[]++()
n1=
∞
∑
=
xn 1
+[]
Ax n
[]
Bu n
[]+=
A
T
SA S– A
T
SB N+()B
T
XB R+()
1
–
B
T
SA N
T
+()– Q+0=
K
S
KB
T
XB R+()
1
–
B
T
SA N
T
+()=
AB
,()
R0
> QNR
1
–
N
T
– 0≥
QNR
1
–
N
T
– ABR
1
–
N
T
–,()