User`s guide
Table Of Contents
- Preface
- Quick Start
- LTI Models
- Introduction
- Creating LTI Models
- LTI Properties
- Model Conversion
- Time Delays
- Simulink Block for LTI Systems
- References
- Operations on LTI Models
- Arrays of LTI Models
- Model Analysis Tools
- The LTI Viewer
- Introduction
- Getting Started Using the LTI Viewer: An Example
- The LTI Viewer Menus
- The Right-Click Menus
- The LTI Viewer Tools Menu
- Simulink LTI Viewer
- Control Design Tools
- The Root Locus Design GUI
- Introduction
- A Servomechanism Example
- Controller Design Using the Root Locus Design GUI
- Additional Root Locus Design GUI Features
- References
- Design Case Studies
- Reliable Computations
- Reference
- Category Tables
- acker
- append
- augstate
- balreal
- bode
- c2d
- canon
- care
- chgunits
- connect
- covar
- ctrb
- ctrbf
- d2c
- d2d
- damp
- dare
- dcgain
- delay2z
- dlqr
- dlyap
- drmodel, drss
- dsort
- dss
- dssdata
- esort
- estim
- evalfr
- feedback
- filt
- frd
- frdata
- freqresp
- gensig
- get
- gram
- hasdelay
- impulse
- initial
- inv
- isct, isdt
- isempty
- isproper
- issiso
- kalman
- kalmd
- lft
- lqgreg
- lqr
- lqrd
- lqry
- lsim
- ltiview
- lyap
- margin
- minreal
- modred
- ndims
- ngrid
- nichols
- norm
- nyquist
- obsv
- obsvf
- ord2
- pade
- parallel
- place
- pole
- pzmap
- reg
- reshape
- rlocfind
- rlocus
- rltool
- rmodel, rss
- series
- set
- sgrid
- sigma
- size
- sminreal
- ss
- ss2ss
- ssbal
- ssdata
- stack
- step
- tf
- tfdata
- totaldelay
- zero
- zgrid
- zpk
- zpkdata
- Index

care
11-31
Finally, note that the variable l contains the closed-loop eigenvalues eig(a–
b*g)
.
l
l =
–3.5026
–1.4370
Example 2
To solve the -like Riccati equation
rewrite it in the
care format as
You can now compute the stabilizing solution by
B = [B1 , B2]
m1 = size(B1,2)
m2 = size(B2,2)
R = [–g^2*eye(m1) zeros(m1,m2) ; zeros(m2,m1) eye(m2)]
X = care(A,B,C'*C,R)
Algorithm care implements the algorithms described in [1]. It works with the
Hamiltonian matrix when is well-conditioned and ; otherwise it uses
the extended Hamiltonian pencil and QZ algorithm.
Limitations The pair must be stabilizable (that is, all unstable modes are
controllable). In addition, the associated Hamiltonian matrix or pencil must
have no eigenvalue on the imaginary axis. Sufficient conditions for this to hold
are detectable when and , or
H
∞
A
T
XXAXγ
2
–
B
1
B
1
T
B
2
B
2
T
–()X++ C
T
C+ 0=
A
T
XXAXB
1
B
2
,[]
γ
2–
I–0
0I
1–
B
1
T
B
2
T
X– C
T
C++0=
B
R
X
R
EI
=
AB
,()
QA
,()
S0
=
R0
>