User`s guide
Table Of Contents
- Preface
- Quick Start
- LTI Models
- Introduction
- Creating LTI Models
- LTI Properties
- Model Conversion
- Time Delays
- Simulink Block for LTI Systems
- References
- Operations on LTI Models
- Arrays of LTI Models
- Model Analysis Tools
- The LTI Viewer
- Introduction
- Getting Started Using the LTI Viewer: An Example
- The LTI Viewer Menus
- The Right-Click Menus
- The LTI Viewer Tools Menu
- Simulink LTI Viewer
- Control Design Tools
- The Root Locus Design GUI
- Introduction
- A Servomechanism Example
- Controller Design Using the Root Locus Design GUI
- Additional Root Locus Design GUI Features
- References
- Design Case Studies
- Reliable Computations
- Reference
- Category Tables
- acker
- append
- augstate
- balreal
- bode
- c2d
- canon
- care
- chgunits
- connect
- covar
- ctrb
- ctrbf
- d2c
- d2d
- damp
- dare
- dcgain
- delay2z
- dlqr
- dlyap
- drmodel, drss
- dsort
- dss
- dssdata
- esort
- estim
- evalfr
- feedback
- filt
- frd
- frdata
- freqresp
- gensig
- get
- gram
- hasdelay
- impulse
- initial
- inv
- isct, isdt
- isempty
- isproper
- issiso
- kalman
- kalmd
- lft
- lqgreg
- lqr
- lqrd
- lqry
- lsim
- ltiview
- lyap
- margin
- minreal
- modred
- ndims
- ngrid
- nichols
- norm
- nyquist
- obsv
- obsvf
- ord2
- pade
- parallel
- place
- pole
- pzmap
- reg
- reshape
- rlocfind
- rlocus
- rltool
- rmodel, rss
- series
- set
- sgrid
- sigma
- size
- sminreal
- ss
- ss2ss
- ssbal
- ssdata
- stack
- step
- tf
- tfdata
- totaldelay
- zero
- zgrid
- zpk
- zpkdata
- Index

care
11-29
11care
Purpose Solve continuous-time algebraic Riccati equations (CARE)
Syntax [X,L,G,rr] = care(A,B,Q)
[X,L,G,rr] = care(A,B,Q,R,S,E)
[X,L,G,report] = care(A,B,Q,...,'report')
[X1,X2,L,report] = care(A,B,Q,...,'implicit')
Description [X,L,G,rr] = care(A,B,Q) computes the unique solution of the algebraic
Riccati equation
such that has all its eigenvalues in the open left-half plane. The
matrix is symmetric and called the stabilizing solution of .
[X,L,G,rr] = care(A,B,Q) also returns:
• The eigenvalues
L of
• The gain matrix
• The relative residual rr defined by
[X,L,G,rr] = care(A,B,Q,R,S,E) solves the more general Riccati equation
Here the gain matrix is
and the “closed-loop”
eigenvalues are
L = eig(A–B*G,E).
Two additional syntaxes are provided to help develop applications such as
-optimal control design.
[X,L,G,report] = care(A,B,Q,...,'report')turns off the error messages
when the solution fails to exist and returns a failure re port instead.
The value of
report is:
•
–1 when the associated Hamiltonian pencil has eigenvalues on or very near
the imaginary axis (failure)
•
–2 when there is no finite solution, i.e., with singular
(failure)
• The relative residual defined above when the solution exists (success)
X
Ric X() A
T
XXAXBB
T
X– Q++0==
ABB
T
X–
X
Ric X
()
0
=
ABB
T
X–
GB
T
X=
rr
Ric X
()
F
X
F
---------------------------=
Ric X() A
T
XE E
T
XA E
T
XB S+()R
1
–
B
T
XE S
T
+()– Q++0==
GR
1
–
B
T
XE S
T
+()=
H
∞
X
XX
2
X
1
1
–
=
X
1
rr