User`s guide
Table Of Contents
- Preface
- Quick Start
- LTI Models
- Introduction
- Creating LTI Models
- LTI Properties
- Model Conversion
- Time Delays
- Simulink Block for LTI Systems
- References
- Operations on LTI Models
- Arrays of LTI Models
- Model Analysis Tools
- The LTI Viewer
- Introduction
- Getting Started Using the LTI Viewer: An Example
- The LTI Viewer Menus
- The Right-Click Menus
- The LTI Viewer Tools Menu
- Simulink LTI Viewer
- Control Design Tools
- The Root Locus Design GUI
- Introduction
- A Servomechanism Example
- Controller Design Using the Root Locus Design GUI
- Additional Root Locus Design GUI Features
- References
- Design Case Studies
- Reliable Computations
- Reference
- Category Tables
- acker
- append
- augstate
- balreal
- bode
- c2d
- canon
- care
- chgunits
- connect
- covar
- ctrb
- ctrbf
- d2c
- d2d
- damp
- dare
- dcgain
- delay2z
- dlqr
- dlyap
- drmodel, drss
- dsort
- dss
- dssdata
- esort
- estim
- evalfr
- feedback
- filt
- frd
- frdata
- freqresp
- gensig
- get
- gram
- hasdelay
- impulse
- initial
- inv
- isct, isdt
- isempty
- isproper
- issiso
- kalman
- kalmd
- lft
- lqgreg
- lqr
- lqrd
- lqry
- lsim
- ltiview
- lyap
- margin
- minreal
- modred
- ndims
- ngrid
- nichols
- norm
- nyquist
- obsv
- obsvf
- ord2
- pade
- parallel
- place
- pole
- pzmap
- reg
- reshape
- rlocfind
- rlocus
- rltool
- rmodel, rss
- series
- set
- sgrid
- sigma
- size
- sminreal
- ss
- ss2ss
- ssbal
- ssdata
- stack
- step
- tf
- tfdata
- totaldelay
- zero
- zgrid
- zpk
- zpkdata
- Index

canon
11-27
11canon
Purpose Compute canoni cal state-space re alizations
Syntax csys = canon(sys,'type')
[csys,T] = canon(sys,'type')
Description canon computes a canonical state-space model for the continuous or discrete
LTI system
sys. Two types of canonical forms are supported.
Modal Form
csys = canon(sys,'modal') returns a realization csys in modal form, that is,
where the real eigenvalues appear on the diagonal of the matrix and the
complex conjugate eigenvalues appear in 2-by-2 blocks on the diagonal of .
For a system with eigenvalues , the modal matrix is of the
form
Companion Form
csys = canon(sys,'companion') produces a companion realization of sys
where the characteristic polynomial of the system appears explicitly in the
rightmost column of the matrix. For a system with characteristic polynomial
the corresponding companion matrix i s
A
A
λ
1
σ
j
ωλ
2
,±,()
A
λ
1
000
0σω0
0 ω– σ0
000λ
2
A
ps() s
n
a
1
s
n 1
–
... a
n 1–
sa
n
++++=
A
A
00....0a
n
–
100..0a
n1–
–
010.::
:0..::
0..10a
2
–
0....01a
1
–
=