User`s guide
Table Of Contents
- Preface
- Quick Start
- LTI Models
- Introduction
- Creating LTI Models
- LTI Properties
- Model Conversion
- Time Delays
- Simulink Block for LTI Systems
- References
- Operations on LTI Models
- Arrays of LTI Models
- Model Analysis Tools
- The LTI Viewer
- Introduction
- Getting Started Using the LTI Viewer: An Example
- The LTI Viewer Menus
- The Right-Click Menus
- The LTI Viewer Tools Menu
- Simulink LTI Viewer
- Control Design Tools
- The Root Locus Design GUI
- Introduction
- A Servomechanism Example
- Controller Design Using the Root Locus Design GUI
- Additional Root Locus Design GUI Features
- References
- Design Case Studies
- Reliable Computations
- Reference
- Category Tables
- acker
- append
- augstate
- balreal
- bode
- c2d
- canon
- care
- chgunits
- connect
- covar
- ctrb
- ctrbf
- d2c
- d2d
- damp
- dare
- dcgain
- delay2z
- dlqr
- dlyap
- drmodel, drss
- dsort
- dss
- dssdata
- esort
- estim
- evalfr
- feedback
- filt
- frd
- frdata
- freqresp
- gensig
- get
- gram
- hasdelay
- impulse
- initial
- inv
- isct, isdt
- isempty
- isproper
- issiso
- kalman
- kalmd
- lft
- lqgreg
- lqr
- lqrd
- lqry
- lsim
- ltiview
- lyap
- margin
- minreal
- modred
- ndims
- ngrid
- nichols
- norm
- nyquist
- obsv
- obsvf
- ord2
- pade
- parallel
- place
- pole
- pzmap
- reg
- reshape
- rlocfind
- rlocus
- rltool
- rmodel, rss
- series
- set
- sgrid
- sigma
- size
- sminreal
- ss
- ss2ss
- ssbal
- ssdata
- stack
- step
- tf
- tfdata
- totaldelay
- zero
- zgrid
- zpk
- zpkdata
- Index

balreal
11-18
Algorithm Consider the model
with controllability and observability gramians and . The state
coordinate transformation produces the equivalent model
and transforms the gramians to
The function
balreal computes a particular similarity transformation such
that
See [1,2] for details on the algorithm.
Limitations The LTI model sys must be stable. In addition, controllability and
observability are required for state-space models.
See Also gram Controllability and observability gramians
minreal Minimal realizations
modred M odel order reduction
References [1]Laub,A.J.,M.T.Heath,C.C.Paige,andR.C.Ward,“ComputationofSystem
Balancing Transformations and Other Applications of Simultaneous
Diagonalization Algorithms,” IEEE Trans. Automatic Control, AC-32 (1987),
pp. 115–122.
[2] Moo re, B., “P rincipal Component Analysis in Linear Systems :
Controllability, Obs ervability , and Model Reductio n,” IEEE Transactions on
Automatic Control, AC-26 (1981), pp. 17–31.
[3] Laub, A.J., “Comp utation of Balancing Transformations,” Proc. ACC,San
Francisco, Vol.1, paper FA8-E, 1980.
x
·
Ax Bu+=
yCxDu+=
W
c
W
o
xTx=
x
·
TAT
1–
xTBu+=
yCT
1–
xDu+=
W
c
TW
c
T
T
= , W
o
T
T
–
W
o
T
1
–
=
T
W
c
W
o
diag g()==