User`s guide
Table Of Contents
- Preface
- Quick Start
- LTI Models
- Introduction
- Creating LTI Models
- LTI Properties
- Model Conversion
- Time Delays
- Simulink Block for LTI Systems
- References
- Operations on LTI Models
- Arrays of LTI Models
- Model Analysis Tools
- The LTI Viewer
- Introduction
- Getting Started Using the LTI Viewer: An Example
- The LTI Viewer Menus
- The Right-Click Menus
- The LTI Viewer Tools Menu
- Simulink LTI Viewer
- Control Design Tools
- The Root Locus Design GUI
- Introduction
- A Servomechanism Example
- Controller Design Using the Root Locus Design GUI
- Additional Root Locus Design GUI Features
- References
- Design Case Studies
- Reliable Computations
- Reference
- Category Tables
- acker
- append
- augstate
- balreal
- bode
- c2d
- canon
- care
- chgunits
- connect
- covar
- ctrb
- ctrbf
- d2c
- d2d
- damp
- dare
- dcgain
- delay2z
- dlqr
- dlyap
- drmodel, drss
- dsort
- dss
- dssdata
- esort
- estim
- evalfr
- feedback
- filt
- frd
- frdata
- freqresp
- gensig
- get
- gram
- hasdelay
- impulse
- initial
- inv
- isct, isdt
- isempty
- isproper
- issiso
- kalman
- kalmd
- lft
- lqgreg
- lqr
- lqrd
- lqry
- lsim
- ltiview
- lyap
- margin
- minreal
- modred
- ndims
- ngrid
- nichols
- norm
- nyquist
- obsv
- obsvf
- ord2
- pade
- parallel
- place
- pole
- pzmap
- reg
- reshape
- rlocfind
- rlocus
- rltool
- rmodel, rss
- series
- set
- sgrid
- sigma
- size
- sminreal
- ss
- ss2ss
- ssbal
- ssdata
- stack
- step
- tf
- tfdata
- totaldelay
- zero
- zgrid
- zpk
- zpkdata
- Index

balreal
11-16
11balreal
Purpose Input/output balancing of state-space realizations
Syntax sysb = balreal(sys)
[sysb,g,T,Ti] = balreal(sys)
Description sysb = balreal(sys) produces a balanced realization sysb of the LTI model
sys with equal and diagonal controllability and observability gramians (see
gram foradefinitionofgramian).balreal handlesbothcontinuousanddiscrete
systems. If
sys is not a state-space model, it is first and automatically
converted to state space using
ss.
[sysb,g,T,Ti] = balreal(sys) also returns the vector g containing the
diagonal ofthe balancedgramian,the state similaritytransformation
used to convert
sys to sysb, and the inverse transformation Ti = .
If the system is normalized properly, the diagonal
g of the joint gramian can be
used to reduce the model order. Because
g reflects the combined controllability
and observability of individual states of the balanced model, you can delete
thosestateswitha small
g(i) whileretainingthemostimportantinput-output
characteristics of the original system. Use
modred to perform the state
elimination.
Example Consider the zero-pol e-gain model
sys = zpk([–10 –20.01],[–5 –9.9 –20.1],1)
Zero/pole/gain:
(s+10) (s+20.01)
----------------------
(s+5) (s+9.9) (s+20.1)
A state-space realization with balanced gramians is obtained by
[sysb,g] = balreal(sys)
The diagonal entries of the joint gramian are
g'
ans =
1.0062e–01 6.8039e–05 1.0055e–05
x
b
Tx
=
T
1
–