User`s guide
Table Of Contents
- Preface
- Quick Start
- LTI Models
- Introduction
- Creating LTI Models
- LTI Properties
- Model Conversion
- Time Delays
- Simulink Block for LTI Systems
- References
- Operations on LTI Models
- Arrays of LTI Models
- Model Analysis Tools
- The LTI Viewer
- Introduction
- Getting Started Using the LTI Viewer: An Example
- The LTI Viewer Menus
- The Right-Click Menus
- The LTI Viewer Tools Menu
- Simulink LTI Viewer
- Control Design Tools
- The Root Locus Design GUI
- Introduction
- A Servomechanism Example
- Controller Design Using the Root Locus Design GUI
- Additional Root Locus Design GUI Features
- References
- Design Case Studies
- Reliable Computations
- Reference
- Category Tables
- acker
- append
- augstate
- balreal
- bode
- c2d
- canon
- care
- chgunits
- connect
- covar
- ctrb
- ctrbf
- d2c
- d2d
- damp
- dare
- dcgain
- delay2z
- dlqr
- dlyap
- drmodel, drss
- dsort
- dss
- dssdata
- esort
- estim
- evalfr
- feedback
- filt
- frd
- frdata
- freqresp
- gensig
- get
- gram
- hasdelay
- impulse
- initial
- inv
- isct, isdt
- isempty
- isproper
- issiso
- kalman
- kalmd
- lft
- lqgreg
- lqr
- lqrd
- lqry
- lsim
- ltiview
- lyap
- margin
- minreal
- modred
- ndims
- ngrid
- nichols
- norm
- nyquist
- obsv
- obsvf
- ord2
- pade
- parallel
- place
- pole
- pzmap
- reg
- reshape
- rlocfind
- rlocus
- rltool
- rmodel, rss
- series
- set
- sgrid
- sigma
- size
- sminreal
- ss
- ss2ss
- ssbal
- ssdata
- stack
- step
- tf
- tfdata
- totaldelay
- zero
- zgrid
- zpk
- zpkdata
- Index

acker
11-11
11acker
Purpose Pole placement design for single-input systems
Syntax k = acker(A,b,p)
Description Given the single-input system
and a vector
p of desired closed-loop pole locations, acker (A,b,p)uses
Ackermann’s formula [1] to calculate a gain vector
k such that the state
feedback places the closed-loop poles at the locations
p.Inother
words, the eigenvalues of match the entries of
p (up to ordering). Here
A is thestatetransmitter matrixand b is the input to state transmission vector.
You can also use
acker for estimator gain selection by transposing the matrix
A and substituting c' for b when y=cxis a single output.
l = acker(a',c',p).'
Limitations acker is limited to single-input systems and the pair must be
controllable.
Note that this method is not numerica lly reliable and starts to break down
rapidly for problems of order greater than 5 or for weakly controllable systems.
See
place for a more general and reliable alternative.
See Also lqr Optimal LQ regulator
place Pole placement design
rlocus, rlocfind Root locus design
References [1] Kailath, T., Linear Systems, Prentice-Hall, 1980, p. 201.
x
·
Ax bu+=
ukx
–=
Abk
–
Ab
,()