User`s guide
Table Of Contents
- Preface
- Quick Start
- LTI Models
- Introduction
- Creating LTI Models
- LTI Properties
- Model Conversion
- Time Delays
- Simulink Block for LTI Systems
- References
- Operations on LTI Models
- Arrays of LTI Models
- Model Analysis Tools
- The LTI Viewer
- Introduction
- Getting Started Using the LTI Viewer: An Example
- The LTI Viewer Menus
- The Right-Click Menus
- The LTI Viewer Tools Menu
- Simulink LTI Viewer
- Control Design Tools
- The Root Locus Design GUI
- Introduction
- A Servomechanism Example
- Controller Design Using the Root Locus Design GUI
- Additional Root Locus Design GUI Features
- References
- Design Case Studies
- Reliable Computations
- Reference
- Category Tables
- acker
- append
- augstate
- balreal
- bode
- c2d
- canon
- care
- chgunits
- connect
- covar
- ctrb
- ctrbf
- d2c
- d2d
- damp
- dare
- dcgain
- delay2z
- dlqr
- dlyap
- drmodel, drss
- dsort
- dss
- dssdata
- esort
- estim
- evalfr
- feedback
- filt
- frd
- frdata
- freqresp
- gensig
- get
- gram
- hasdelay
- impulse
- initial
- inv
- isct, isdt
- isempty
- isproper
- issiso
- kalman
- kalmd
- lft
- lqgreg
- lqr
- lqrd
- lqry
- lsim
- ltiview
- lyap
- margin
- minreal
- modred
- ndims
- ngrid
- nichols
- norm
- nyquist
- obsv
- obsvf
- ord2
- pade
- parallel
- place
- pole
- pzmap
- reg
- reshape
- rlocfind
- rlocus
- rltool
- rmodel, rss
- series
- set
- sgrid
- sigma
- size
- sminreal
- ss
- ss2ss
- ssbal
- ssdata
- stack
- step
- tf
- tfdata
- totaldelay
- zero
- zgrid
- zpk
- zpkdata
- Index

10 Reliable Computations
10-6
row of A. This perturbed matrix has n distinct eigenvalues with
. Thus, you can see that this small perturbation in the
data has been magnified by a factor on the order of to result in a rather
large perturbation in the solution (the eigenvalues of
A). Further details and
related examples are to be found in [7].
It is important to realize that a matrix can be ill-conditioned with respect to
inversion but have a well-conditioned eigenproblem, and vice versa. For
example, consider an upper triangular matrix of ones (zeros below the
diagonal) given by
A = triu(ones(n));
This matrix is ill-conditioned with respect to its eigenproblem (try small
perturbations in
A(n,1) for, say, n=20), but is well-cond itioned with respect to
inversion (check its condition number). On the other hand, the matrix
has a well-conditioned eigenproblem, but is ill-conditioned with respect to
inversion for small .
Numerical Stability
Numerical stability is somewhat more difficult to illustrate meaningfully.
Consult the references in [5], [6], and [7] for further details. Here is one small
example to illustrate the difference between stability and conditioning.
Gaussian elimination with no pivoting for solving the linear system is
known to be numerically unstable. Consider
Allcomputationsare carriedoutinthree-significant-figuredecimal arithmetic.
Thetrueanswer isapproximately
λ
1
...
λ
n
,,
λ
k
12
⁄
j2
π
kn
⁄()
exp
=
2
n
A
11
11 δ+
=
δ
Ax b
=
A
0.001 1.000
1.000 1.000–
= b
1.000
0.000
=
xA
1
–
b=
x
0.999
0.999
=