User`s guide
Table Of Contents
- Preface
- Quick Start
- LTI Models
- Introduction
- Creating LTI Models
- LTI Properties
- Model Conversion
- Time Delays
- Simulink Block for LTI Systems
- References
- Operations on LTI Models
- Arrays of LTI Models
- Model Analysis Tools
- The LTI Viewer
- Introduction
- Getting Started Using the LTI Viewer: An Example
- The LTI Viewer Menus
- The Right-Click Menus
- The LTI Viewer Tools Menu
- Simulink LTI Viewer
- Control Design Tools
- The Root Locus Design GUI
- Introduction
- A Servomechanism Example
- Controller Design Using the Root Locus Design GUI
- Additional Root Locus Design GUI Features
- References
- Design Case Studies
- Reliable Computations
- Reference
- Category Tables
- acker
- append
- augstate
- balreal
- bode
- c2d
- canon
- care
- chgunits
- connect
- covar
- ctrb
- ctrbf
- d2c
- d2d
- damp
- dare
- dcgain
- delay2z
- dlqr
- dlyap
- drmodel, drss
- dsort
- dss
- dssdata
- esort
- estim
- evalfr
- feedback
- filt
- frd
- frdata
- freqresp
- gensig
- get
- gram
- hasdelay
- impulse
- initial
- inv
- isct, isdt
- isempty
- isproper
- issiso
- kalman
- kalmd
- lft
- lqgreg
- lqr
- lqrd
- lqry
- lsim
- ltiview
- lyap
- margin
- minreal
- modred
- ndims
- ngrid
- nichols
- norm
- nyquist
- obsv
- obsvf
- ord2
- pade
- parallel
- place
- pole
- pzmap
- reg
- reshape
- rlocfind
- rlocus
- rltool
- rmodel, rss
- series
- set
- sgrid
- sigma
- size
- sminreal
- ss
- ss2ss
- ssbal
- ssdata
- stack
- step
- tf
- tfdata
- totaldelay
- zero
- zgrid
- zpk
- zpkdata
- Index

Kalman Filtering
9-57
The error covariance before filtering (measurement error) is
MeasErrCov
MeasErrCov =
1.1138
while the error covariance after filtering (estimation error) is only
EstErrCov
EstErrCov =
0.2722
Time-Varying Kalman Filter
The t ime-varying Kalman filter is a gen e ra lization o f the steady-state filter for
time-varying systems or L TI systems w ith nonstationary noise covariance.
Given t he plant state and measurement equations
the time-v arying Kalman filter is g iven by the recursions
Measurement update
Time update
xn 1+[]Ax n[] Bu n[] Gw n[]++=
y
v
n[] Cx n[] vn[]+=
x
ˆ
nn[]x
ˆ
nn 1–[]Mn[]y
v
n[] Cx
ˆ
nn 1–[]–()+=
Mn[] Pnn 1–[]C
T
Rn[] CP n n 1–[]C
T
+()
1–
=
Pnn[]IMn[]C–()Pnn 1–[]=
x
ˆ
n1n+[]Ax
ˆ
nn[]Bu n[]+=
Pn 1n+[]AP n n[]A
T
GQ n[]G
T
+=