User`s guide
Table Of Contents
- Preface
- Quick Start
- LTI Models
- Introduction
- Creating LTI Models
- LTI Properties
- Model Conversion
- Time Delays
- Simulink Block for LTI Systems
- References
- Operations on LTI Models
- Arrays of LTI Models
- Model Analysis Tools
- The LTI Viewer
- Introduction
- Getting Started Using the LTI Viewer: An Example
- The LTI Viewer Menus
- The Right-Click Menus
- The LTI Viewer Tools Menu
- Simulink LTI Viewer
- Control Design Tools
- The Root Locus Design GUI
- Introduction
- A Servomechanism Example
- Controller Design Using the Root Locus Design GUI
- Additional Root Locus Design GUI Features
- References
- Design Case Studies
- Reliable Computations
- Reference
- Category Tables
- acker
- append
- augstate
- balreal
- bode
- c2d
- canon
- care
- chgunits
- connect
- covar
- ctrb
- ctrbf
- d2c
- d2d
- damp
- dare
- dcgain
- delay2z
- dlqr
- dlyap
- drmodel, drss
- dsort
- dss
- dssdata
- esort
- estim
- evalfr
- feedback
- filt
- frd
- frdata
- freqresp
- gensig
- get
- gram
- hasdelay
- impulse
- initial
- inv
- isct, isdt
- isempty
- isproper
- issiso
- kalman
- kalmd
- lft
- lqgreg
- lqr
- lqrd
- lqry
- lsim
- ltiview
- lyap
- margin
- minreal
- modred
- ndims
- ngrid
- nichols
- norm
- nyquist
- obsv
- obsvf
- ord2
- pade
- parallel
- place
- pole
- pzmap
- reg
- reshape
- rlocfind
- rlocus
- rltool
- rmodel, rss
- series
- set
- sgrid
- sigma
- size
- sminreal
- ss
- ss2ss
- ssbal
- ssdata
- stack
- step
- tf
- tfdata
- totaldelay
- zero
- zgrid
- zpk
- zpkdata
- Index

Kalman Filtering
9-51
In these equations:
• is the estimate of given past measuremen ts up to
• is the updated estimate based on the last measurement
Given the current estimate , the time update predicts the state value at
the next sample (one- st ep- ahe ad predict or). The measurement update
then adjusts this prediction based on the new measurement . The
correction term is a function of the innovation, that is, the discrepancy.
between the me asured and predicted values of . The innovation gain
is chosen to minimize the steady-state covariance of the estimation error
given the noise covariances
You can combine t he time and measurement update equations into one
state-space model (the Kalman filter).
This filt er generates an optim al estimate of . Note that the filter
state is .
Steady-State Design
You can design the steady-state Kalman filter described above with the
function
kalman. First specify the plant model with the process noise.
x
ˆ
nn 1–[]
xn
[]
y
v
n 1
–[]
x
ˆ
nn[]
y
v
n
[]
x
ˆ
nn[]
n1
+
y
v
n1
+[]
y
v
n1+[]Cx
ˆ
n 1+ n[]– Cxn 1+[]x
ˆ
n1+n[]–()=
yn 1
+[]
M
Ewn[]wn[]
T
()Q,=Evn[]vn[]
T
()R=
x
ˆ
n1n+[]AI MC–()x
ˆ
nn 1–[]
BAM
un[]
y
v
n[]
+=
y
ˆ
nn[]CI MC–()x
ˆ
nn 1–[]CM y
v
n[]+=
y
ˆ
nn[]
yn
[]
x
ˆ
nn 1–[]
xn 1+[]Ax n[] Bu n[] Bw n[]++= (state equation)
yn[] Cx n[]= (measurement equation)