User`s guide
Table Of Contents
- Preface
- Quick Start
- LTI Models
- Introduction
- Creating LTI Models
- LTI Properties
- Model Conversion
- Time Delays
- Simulink Block for LTI Systems
- References
- Operations on LTI Models
- Arrays of LTI Models
- Model Analysis Tools
- The LTI Viewer
- Introduction
- Getting Started Using the LTI Viewer: An Example
- The LTI Viewer Menus
- The Right-Click Menus
- The LTI Viewer Tools Menu
- Simulink LTI Viewer
- Control Design Tools
- The Root Locus Design GUI
- Introduction
- A Servomechanism Example
- Controller Design Using the Root Locus Design GUI
- Additional Root Locus Design GUI Features
- References
- Design Case Studies
- Reliable Computations
- Reference
- Category Tables
- acker
- append
- augstate
- balreal
- bode
- c2d
- canon
- care
- chgunits
- connect
- covar
- ctrb
- ctrbf
- d2c
- d2d
- damp
- dare
- dcgain
- delay2z
- dlqr
- dlyap
- drmodel, drss
- dsort
- dss
- dssdata
- esort
- estim
- evalfr
- feedback
- filt
- frd
- frdata
- freqresp
- gensig
- get
- gram
- hasdelay
- impulse
- initial
- inv
- isct, isdt
- isempty
- isproper
- issiso
- kalman
- kalmd
- lft
- lqgreg
- lqr
- lqrd
- lqry
- lsim
- ltiview
- lyap
- margin
- minreal
- modred
- ndims
- ngrid
- nichols
- norm
- nyquist
- obsv
- obsvf
- ord2
- pade
- parallel
- place
- pole
- pzmap
- reg
- reshape
- rlocfind
- rlocus
- rltool
- rmodel, rss
- series
- set
- sgrid
- sigma
- size
- sminreal
- ss
- ss2ss
- ssbal
- ssdata
- stack
- step
- tf
- tfdata
- totaldelay
- zero
- zgrid
- zpk
- zpkdata
- Index

LTI Models
1-5
where each SISO entry is characterized by its n umerator and denominator.
Cell arrays provide an ide al means to specify the resulting arrays of
numeratorsanddenominators;see,“MIMOTransferFunctionModels”onpage
2-10 for more informati on. For example,
num = {0.5,[1 1]} % 1-by-2 cell array of numerators
den = {[1 0],[1 2]} % 1-by-2 cell array of denominators
H = tf(num,den)
creates the one-output/two-input transfer function
Alternatively, you c an create the same transfer function by matrix-like
concatenation of its SISO entries
h11 = tf(0.5,[1 0]) % 0.5/s
h12 = tf([1 1],[1 2]) % (s+1)/(s+2)
H = [h11,h12]
MIMO zero/pole/gain systems are defined in a similar fashion. For example,
the following commands specify above as a zero/pole/gain model
Zeros = {[],–1} % Note: use [] when no zero
Poles = {0 ,–2}
Gains = [0.5,1] % Note: use regular matrix for gains
H = zpk(Zeros,Poles,Gains)
Model Conversion
The functions tf, zpk, frd,andss also perform model conversion; see “Model
Conversion” on page 2-42 for more information. For example,
sys_ss = ss(sys)
converts some tf or zpk model sys to state space. Similarly, if you type
h = tf(1,[1 2 1]) % transfer function 1/(s^2+2s+1)
zpk(h)
Hs()
0.5
s
--------
s 1+
s 2+
------------
=
Hs
()