User`s guide
Table Of Contents
- Preface
- Quick Start
- LTI Models
- Introduction
- Creating LTI Models
- LTI Properties
- Model Conversion
- Time Delays
- Simulink Block for LTI Systems
- References
- Operations on LTI Models
- Arrays of LTI Models
- Model Analysis Tools
- The LTI Viewer
- Introduction
- Getting Started Using the LTI Viewer: An Example
- The LTI Viewer Menus
- The Right-Click Menus
- The LTI Viewer Tools Menu
- Simulink LTI Viewer
- Control Design Tools
- The Root Locus Design GUI
- Introduction
- A Servomechanism Example
- Controller Design Using the Root Locus Design GUI
- Additional Root Locus Design GUI Features
- References
- Design Case Studies
- Reliable Computations
- Reference
- Category Tables
- acker
- append
- augstate
- balreal
- bode
- c2d
- canon
- care
- chgunits
- connect
- covar
- ctrb
- ctrbf
- d2c
- d2d
- damp
- dare
- dcgain
- delay2z
- dlqr
- dlyap
- drmodel, drss
- dsort
- dss
- dssdata
- esort
- estim
- evalfr
- feedback
- filt
- frd
- frdata
- freqresp
- gensig
- get
- gram
- hasdelay
- impulse
- initial
- inv
- isct, isdt
- isempty
- isproper
- issiso
- kalman
- kalmd
- lft
- lqgreg
- lqr
- lqrd
- lqry
- lsim
- ltiview
- lyap
- margin
- minreal
- modred
- ndims
- ngrid
- nichols
- norm
- nyquist
- obsv
- obsvf
- ord2
- pade
- parallel
- place
- pole
- pzmap
- reg
- reshape
- rlocfind
- rlocus
- rltool
- rmodel, rss
- series
- set
- sgrid
- sigma
- size
- sminreal
- ss
- ss2ss
- ssbal
- ssdata
- stack
- step
- tf
- tfdata
- totaldelay
- zero
- zgrid
- zpk
- zpkdata
- Index

Continuous/Discrete Conversions of LTI Models
3-23
Similarly, the d2c conversion relies on the inverse correspondence
Tustin with Frequency Prewarping
This variation of the Tustin approximation uses the correspondence
This change of variable ensures the matching of the continuous- and
discrete-time frequency responses at the frequency .
Matched Poles and Zeros
The ma tched pole-zero method applies only to SISO systems. The continuous
and discretized systems have matching DC gains and their poles and zeros
correspond in the transformation
See [ 2], p. 14 7 for more details.
H
d
z() Hs'(),where= s'
2
T
s
------
z 1
–
z 1+
------------
=
Hs() H
d
z'(),where= z'
1 sT
s
2
⁄+
1 sT
s
2⁄–
--------------------------=
H
d
z() Hs'(),= s'
ω
ωT
s
2⁄()tan
---------------------------------
z 1
–
z 1+
------------
=
ω
Hjω() H
d
e
j
ω
T
s
()=
ze
sT
s
=