Specifications
Table Of Contents
- Introduction
- LTI Models
- Operations on LTI Models
- Model Analysis Tools
- Arrays of LTI Models
- Customization
- Setting Toolbox Preferences
- Setting Tool Preferences
- Customizing Response Plot Properties
- Design Case Studies
- Reliable Computations
- GUI Reference
- SISO Design Tool Reference
- Menu Bar
- File
- Import
- Export
- Toolbox Preferences
- Print to Figure
- Close
- Edit
- Undo and Redo
- Root Locus and Bode Diagrams
- SISO Tool Preferences
- View
- Root Locus and Bode Diagrams
- System Data
- Closed Loop Poles
- Design History
- Tools
- Loop Responses
- Continuous/Discrete Conversions
- Draw a Simulink Diagram
- Compensator
- Format
- Edit
- Store
- Retrieve
- Clear
- Window
- Help
- Tool Bar
- Current Compensator
- Feedback Structure
- Root Locus Right-Click Menus
- Bode Diagram Right-Click Menus
- Status Panel
- Menu Bar
- LTI Viewer Reference
- Right-Click Menus for Response Plots
- Function Reference
- Functions by Category
- acker
- allmargin
- append
- augstate
- balreal
- bode
- bodemag
- c2d
- canon
- care
- chgunits
- connect
- covar
- ctrb
- ctrbf
- d2c
- d2d
- damp
- dare
- dcgain
- delay2z
- dlqr
- dlyap
- drss
- dsort
- dss
- dssdata
- esort
- estim
- evalfr
- feedback
- filt
- frd
- frdata
- freqresp
- gensig
- get
- gram
- hasdelay
- impulse
- initial
- interp
- inv
- isct, isdt
- isempty
- isproper
- issiso
- kalman
- kalmd
- lft
- lqgreg
- lqr
- lqrd
- lqry
- lsim
- ltimodels
- ltiprops
- ltiview
- lyap
- margin
- minreal
- modred
- ndims
- ngrid
- nichols
- norm
- nyquist
- obsv
- obsvf
- ord2
- pade
- parallel
- place
- pole
- pzmap
- reg
- reshape
- rlocus
- rss
- series
- set
- sgrid
- sigma
- sisotool
- size
- sminreal
- ss
- ss2ss
- ssbal
- ssdata
- stack
- step
- tf
- tfdata
- totaldelay
- zero
- zgrid
- zpk
- zpkdata
- Index

2 LTI Models
2-50
Specifying Delays in Discrete-Time Models
You can also use the ioDelay, InputDelay,andOutputDelay properties to
specify delays in discrete-time LTI models. You specify time delays in
discrete-timemodels with integer multiples ofthesampling period.Theinteger
k you supply for the time delay of a discrete-time model specifies a time delay
of k sampling periods. Such a delay contributes a factor to the transfer
function.
For example,
h = tf(1,[1 0.5 0.2],0.1,'inputdelay',3)
produces the discrete-time transfer function
Transfer function:
1
z^(–3) * -----------------
z^2 + 0.5 z + 0.2
Sampling time: 0.1
Notice the z^(–3) factor reflecting the three-sampling-period delay on the
input.
Mapping Discrete-Time Delays to Poles at the Origin
Since discrete-time delays are equivalent to additional poles at ,they can
be easily absorbed into the transfer function denominator or the state-space
equations. For example, the transfer function of the delayed integrator
is
α
1
β
1
+
α
2
β
1
+ ...
α
m
β
1
+
α
1
β
2
+
α
2
β
2
+
α
m
β
2
+
:: :
α
1
β
p
+
α
2
β
p
+ ...
α
m
β
p
+
z
k–
z 0=
yk 1+[]yk[] uk 2–[]+=