Specifications
Table Of Contents
- Introduction
- LTI Models
- Operations on LTI Models
- Model Analysis Tools
- Arrays of LTI Models
- Customization
- Setting Toolbox Preferences
- Setting Tool Preferences
- Customizing Response Plot Properties
- Design Case Studies
- Reliable Computations
- GUI Reference
- SISO Design Tool Reference
- Menu Bar
- File
- Import
- Export
- Toolbox Preferences
- Print to Figure
- Close
- Edit
- Undo and Redo
- Root Locus and Bode Diagrams
- SISO Tool Preferences
- View
- Root Locus and Bode Diagrams
- System Data
- Closed Loop Poles
- Design History
- Tools
- Loop Responses
- Continuous/Discrete Conversions
- Draw a Simulink Diagram
- Compensator
- Format
- Edit
- Store
- Retrieve
- Clear
- Window
- Help
- Tool Bar
- Current Compensator
- Feedback Structure
- Root Locus Right-Click Menus
- Bode Diagram Right-Click Menus
- Status Panel
- Menu Bar
- LTI Viewer Reference
- Right-Click Menus for Response Plots
- Function Reference
- Functions by Category
- acker
- allmargin
- append
- augstate
- balreal
- bode
- bodemag
- c2d
- canon
- care
- chgunits
- connect
- covar
- ctrb
- ctrbf
- d2c
- d2d
- damp
- dare
- dcgain
- delay2z
- dlqr
- dlyap
- drss
- dsort
- dss
- dssdata
- esort
- estim
- evalfr
- feedback
- filt
- frd
- frdata
- freqresp
- gensig
- get
- gram
- hasdelay
- impulse
- initial
- interp
- inv
- isct, isdt
- isempty
- isproper
- issiso
- kalman
- kalmd
- lft
- lqgreg
- lqr
- lqrd
- lqry
- lsim
- ltimodels
- ltiprops
- ltiview
- lyap
- margin
- minreal
- modred
- ndims
- ngrid
- nichols
- norm
- nyquist
- obsv
- obsvf
- ord2
- pade
- parallel
- place
- pole
- pzmap
- reg
- reshape
- rlocus
- rss
- series
- set
- sgrid
- sigma
- sisotool
- size
- sminreal
- ss
- ss2ss
- ssbal
- ssdata
- stack
- step
- tf
- tfdata
- totaldelay
- zero
- zgrid
- zpk
- zpkdata
- Index

zpk
16-232
16zpk
Purpose Specify zero-pole-gain models or convert LTI model to zero-pole-gain form
Syntax sys = zpk(z,p,k)
sys = zpk(z,p,k,Ts)
sys = zpk(M)
sys = zpk(z,p,k,ltisys)
sys = zpk(z,p,k,'Property1',Value1,...,'PropertyN',ValueN)
sys = zpk(z,p,k,Ts,'Property1',Value1,...,'PropertyN',ValueN)
sys = zpk('s')
sys = zpk('z')
zsys = zpk(sys)
zsys = zpk(sys,'inv') % for state-space sys only
Description zpk is used tocreatezero-pole-gainmodels(ZPKobjects) or to convertTF orSS
models to zero-pole-gain form.
Creation of Zero-Pole-Gain Models
sys = zpk(z,p,k) creates a continuous-time zero-pole-gain model with zeros
z, poles p, and gain(s) k.Theoutputsys is a ZPK object storing the model data
(see “LTI Objects” on page 2-3).
In the SISO case,
z andp are the vectors of real or complex conjugate zerosand
poles, and
k is the real-valued scalar gain.
Set
z or p to [] for systems without zeros or poles. These two vectors need not
have equal length and the model need not be proper (that is, have an excess of
poles).
You can also use rational expressions to create a ZPK model. To do so, use
either:
•
s = zpk('s') to specifya ZPK model froma rational transfer function of the
Laplace variable,
s.
hs
()
k
sz1
()
–
()
sz2
()
–
()
... szm
()
–
()
sp1
()
–
()
sp2
()
–
()
... spn
()
–
()
----------------------------------------------------------------------------------
=