Specifications
Table Of Contents
- Introduction
- LTI Models
- Operations on LTI Models
- Model Analysis Tools
- Arrays of LTI Models
- Customization
- Setting Toolbox Preferences
- Setting Tool Preferences
- Customizing Response Plot Properties
- Design Case Studies
- Reliable Computations
- GUI Reference
- SISO Design Tool Reference
- Menu Bar
- File
- Import
- Export
- Toolbox Preferences
- Print to Figure
- Close
- Edit
- Undo and Redo
- Root Locus and Bode Diagrams
- SISO Tool Preferences
- View
- Root Locus and Bode Diagrams
- System Data
- Closed Loop Poles
- Design History
- Tools
- Loop Responses
- Continuous/Discrete Conversions
- Draw a Simulink Diagram
- Compensator
- Format
- Edit
- Store
- Retrieve
- Clear
- Window
- Help
- Tool Bar
- Current Compensator
- Feedback Structure
- Root Locus Right-Click Menus
- Bode Diagram Right-Click Menus
- Status Panel
- Menu Bar
- LTI Viewer Reference
- Right-Click Menus for Response Plots
- Function Reference
- Functions by Category
- acker
- allmargin
- append
- augstate
- balreal
- bode
- bodemag
- c2d
- canon
- care
- chgunits
- connect
- covar
- ctrb
- ctrbf
- d2c
- d2d
- damp
- dare
- dcgain
- delay2z
- dlqr
- dlyap
- drss
- dsort
- dss
- dssdata
- esort
- estim
- evalfr
- feedback
- filt
- frd
- frdata
- freqresp
- gensig
- get
- gram
- hasdelay
- impulse
- initial
- interp
- inv
- isct, isdt
- isempty
- isproper
- issiso
- kalman
- kalmd
- lft
- lqgreg
- lqr
- lqrd
- lqry
- lsim
- ltimodels
- ltiprops
- ltiview
- lyap
- margin
- minreal
- modred
- ndims
- ngrid
- nichols
- norm
- nyquist
- obsv
- obsvf
- ord2
- pade
- parallel
- place
- pole
- pzmap
- reg
- reshape
- rlocus
- rss
- series
- set
- sgrid
- sigma
- sisotool
- size
- sminreal
- ss
- ss2ss
- ssbal
- ssdata
- stack
- step
- tf
- tfdata
- totaldelay
- zero
- zgrid
- zpk
- zpkdata
- Index

obsvf
16-162
16obsvf
Purpose Compute the observability staircase form
Syntax [Abar,Bbar,Cbar,T,k] = obsvf(A,B,C)
[Abar,Bbar,Cbar,T,k] = obsvf(A,B,C,tol)
Description Iftheobservability matrixof(A,C) hasrank , wherenis the sizeofA,then
there exists a similarity transformation such that
where is unitary and the transformed system has a staircase form with the
unobservable modes, if any, in the upper left corner.
where isobservable, and the eigenvaluesof are the unobservable
modes.
[Abar,Bbar,Cbar,T,k] = obsvf(A,B,C) decomposes the state-space system
with matrices
A, B,andC into the observability staircase form Abar, Bbar,and
Cbar, as described above. T is the similarity transformation matrix and k is a
vector of length n,wheren is the number of states in
A.Eachentryofk
representsthenumberofobservable states factored out during each step of the
transformation matrix calculation [1]. The number of nonzero elements in
k
indicates how many iterations were necessary to calculate T,andsum(k) is the
number of states in , the observable portion of
Abar.
obsvf(A,B,C,tol) uses the tolerance tol when calculating the observable/
unobservable subspaces. When the tolerance is not specified, it defaults to
10*n*norm(a,1)*eps.
Example Form the observability staircase form of
A =
1 1
4 -2
B =
rn
≤
ATAT
T
,= BTB,= CCT
T
=
T
A
A
no
A
12
0 A
o
,=
B
B
no
B
o
,= C
0 C
o
=
C
o
A
o
,()
A
no
A
o