Specifications
Table Of Contents
- Introduction
- LTI Models
- Operations on LTI Models
- Model Analysis Tools
- Arrays of LTI Models
- Customization
- Setting Toolbox Preferences
- Setting Tool Preferences
- Customizing Response Plot Properties
- Design Case Studies
- Reliable Computations
- GUI Reference
- SISO Design Tool Reference
- Menu Bar
- File
- Import
- Export
- Toolbox Preferences
- Print to Figure
- Close
- Edit
- Undo and Redo
- Root Locus and Bode Diagrams
- SISO Tool Preferences
- View
- Root Locus and Bode Diagrams
- System Data
- Closed Loop Poles
- Design History
- Tools
- Loop Responses
- Continuous/Discrete Conversions
- Draw a Simulink Diagram
- Compensator
- Format
- Edit
- Store
- Retrieve
- Clear
- Window
- Help
- Tool Bar
- Current Compensator
- Feedback Structure
- Root Locus Right-Click Menus
- Bode Diagram Right-Click Menus
- Status Panel
- Menu Bar
- LTI Viewer Reference
- Right-Click Menus for Response Plots
- Function Reference
- Functions by Category
- acker
- allmargin
- append
- augstate
- balreal
- bode
- bodemag
- c2d
- canon
- care
- chgunits
- connect
- covar
- ctrb
- ctrbf
- d2c
- d2d
- damp
- dare
- dcgain
- delay2z
- dlqr
- dlyap
- drss
- dsort
- dss
- dssdata
- esort
- estim
- evalfr
- feedback
- filt
- frd
- frdata
- freqresp
- gensig
- get
- gram
- hasdelay
- impulse
- initial
- interp
- inv
- isct, isdt
- isempty
- isproper
- issiso
- kalman
- kalmd
- lft
- lqgreg
- lqr
- lqrd
- lqry
- lsim
- ltimodels
- ltiprops
- ltiview
- lyap
- margin
- minreal
- modred
- ndims
- ngrid
- nichols
- norm
- nyquist
- obsv
- obsvf
- ord2
- pade
- parallel
- place
- pole
- pzmap
- reg
- reshape
- rlocus
- rss
- series
- set
- sgrid
- sigma
- sisotool
- size
- sminreal
- ss
- ss2ss
- ssbal
- ssdata
- stack
- step
- tf
- tfdata
- totaldelay
- zero
- zgrid
- zpk
- zpkdata
- Index

modred
16-142
16modred
Purpose Model order reduction
Syntax rsys = modred(sys,elim)
rsys = modred(sys,elim,'mdc')
rsys = modred(sys,elim,'del')
Description modred reduces the order of a continuous or discrete state-space model sys.
This functionis usually used in conjunction with
balreal. Two order reduction
techniques are available:
•
rsys = modred(sys,elim) or rsys = modred(sys,elim,'mdc') produces a
reduced-order model
rsys withmatchingDCgain(orequivalently,matching
steady state in the step response). The index vector
elim specifies the states
to be eliminated. The resulting model
rsys has length(elim) fewer states.
This technique consists of setting the derivative of the eliminated states to
zero and solving for the remaining states.
•
rsys = modred(sys,elim,'del')simply deletes the states specified byelim.
While this method does not guarantee matching DC gains, it tends to
producebetter approximations in the frequency domain (see example below).
If the state-space model sys has been balanced with
balreal and the
grammians have small diagonal entries, you can reduce the model order by
eliminating the last states with
modred.
Example Consider the continuous fourth-order model
To reduce its order, first compute a balanced state-space realization with
balreal by typing
h = tf([1 11 36 26],[1 14.6 74.96 153.7 99.65])
[hb,g] = balreal(h)
g'
MATLAB returns
ans =
1.3938e-01 9.5482e-03 6.2712e-04 7.3245e-06
m
m
hs
()
s
3
11s
2
36s 26+++
s
4
14.6+ s
3
74.96s
2
153.7s 99.65+++
------------------------------------------------------------------------------------------------------
=