Specifications
Table Of Contents
- Introduction
- LTI Models
- Operations on LTI Models
- Model Analysis Tools
- Arrays of LTI Models
- Customization
- Setting Toolbox Preferences
- Setting Tool Preferences
- Customizing Response Plot Properties
- Design Case Studies
- Reliable Computations
- GUI Reference
- SISO Design Tool Reference
- Menu Bar
- File
- Import
- Export
- Toolbox Preferences
- Print to Figure
- Close
- Edit
- Undo and Redo
- Root Locus and Bode Diagrams
- SISO Tool Preferences
- View
- Root Locus and Bode Diagrams
- System Data
- Closed Loop Poles
- Design History
- Tools
- Loop Responses
- Continuous/Discrete Conversions
- Draw a Simulink Diagram
- Compensator
- Format
- Edit
- Store
- Retrieve
- Clear
- Window
- Help
- Tool Bar
- Current Compensator
- Feedback Structure
- Root Locus Right-Click Menus
- Bode Diagram Right-Click Menus
- Status Panel
- Menu Bar
- LTI Viewer Reference
- Right-Click Menus for Response Plots
- Function Reference
- Functions by Category
- acker
- allmargin
- append
- augstate
- balreal
- bode
- bodemag
- c2d
- canon
- care
- chgunits
- connect
- covar
- ctrb
- ctrbf
- d2c
- d2d
- damp
- dare
- dcgain
- delay2z
- dlqr
- dlyap
- drss
- dsort
- dss
- dssdata
- esort
- estim
- evalfr
- feedback
- filt
- frd
- frdata
- freqresp
- gensig
- get
- gram
- hasdelay
- impulse
- initial
- interp
- inv
- isct, isdt
- isempty
- isproper
- issiso
- kalman
- kalmd
- lft
- lqgreg
- lqr
- lqrd
- lqry
- lsim
- ltimodels
- ltiprops
- ltiview
- lyap
- margin
- minreal
- modred
- ndims
- ngrid
- nichols
- norm
- nyquist
- obsv
- obsvf
- ord2
- pade
- parallel
- place
- pole
- pzmap
- reg
- reshape
- rlocus
- rss
- series
- set
- sgrid
- sigma
- sisotool
- size
- sminreal
- ss
- ss2ss
- ssbal
- ssdata
- stack
- step
- tf
- tfdata
- totaldelay
- zero
- zgrid
- zpk
- zpkdata
- Index

lqry
16-124
16lqry
Purpose Linear-quadratic (LQ) state-feedback regulator with output weighting
Syntax [K,S,e] = lqry(sys,Q,R)
[K,S,e] = lqry(sys,Q,R,N)
Description Given the plant
or its discrete-time counterpart,
lqry designs a state-feedback control
that minimizes the quadratic cost function with output weighting
(or its discrete-time counterpart). The function
lqry is equivalent to lqr or
dlqr with weighting matrices:
[K,S,e] = lqry(sys,Q,R,N) returns the optimal gain matrix K, the Riccati
solution
S, and the closed-loop eigenvalues e = eig(A-B*K). The state-space
model
sys specifies the continuous- or discrete-time plant data .
The default value
N=0 is assumed when N is omitted.
Example See LQG Design for the x-Axis for an example.
Limitations The data must satisfy the requirements for lqr or dlqr.
See Also lqr State-feedback LQ regulator for continuous plant
dlqr State-feedback LQ regulator for discrete plant
kalman Kalman estimator design
lqgreg Form LQG regulator
x
·
Ax Bu+=
yCxDu+=
uKx–=
Ju
()
y
T
Qy u
T
Ru 2y
T
Nu++
()
td
0
∞
ò
=
QN
N
T
R
C
T
0
D
T
I
QN
N
T
R
CD
0 I
=
ABCD
,,,()
ABQRN
,,,,