Specifications
Table Of Contents
- Introduction
- LTI Models
- Operations on LTI Models
- Model Analysis Tools
- Arrays of LTI Models
- Customization
- Setting Toolbox Preferences
- Setting Tool Preferences
- Customizing Response Plot Properties
- Design Case Studies
- Reliable Computations
- GUI Reference
- SISO Design Tool Reference
- Menu Bar
- File
- Import
- Export
- Toolbox Preferences
- Print to Figure
- Close
- Edit
- Undo and Redo
- Root Locus and Bode Diagrams
- SISO Tool Preferences
- View
- Root Locus and Bode Diagrams
- System Data
- Closed Loop Poles
- Design History
- Tools
- Loop Responses
- Continuous/Discrete Conversions
- Draw a Simulink Diagram
- Compensator
- Format
- Edit
- Store
- Retrieve
- Clear
- Window
- Help
- Tool Bar
- Current Compensator
- Feedback Structure
- Root Locus Right-Click Menus
- Bode Diagram Right-Click Menus
- Status Panel
- Menu Bar
- LTI Viewer Reference
- Right-Click Menus for Response Plots
- Function Reference
- Functions by Category
- acker
- allmargin
- append
- augstate
- balreal
- bode
- bodemag
- c2d
- canon
- care
- chgunits
- connect
- covar
- ctrb
- ctrbf
- d2c
- d2d
- damp
- dare
- dcgain
- delay2z
- dlqr
- dlyap
- drss
- dsort
- dss
- dssdata
- esort
- estim
- evalfr
- feedback
- filt
- frd
- frdata
- freqresp
- gensig
- get
- gram
- hasdelay
- impulse
- initial
- interp
- inv
- isct, isdt
- isempty
- isproper
- issiso
- kalman
- kalmd
- lft
- lqgreg
- lqr
- lqrd
- lqry
- lsim
- ltimodels
- ltiprops
- ltiview
- lyap
- margin
- minreal
- modred
- ndims
- ngrid
- nichols
- norm
- nyquist
- obsv
- obsvf
- ord2
- pade
- parallel
- place
- pole
- pzmap
- reg
- reshape
- rlocus
- rss
- series
- set
- sgrid
- sigma
- sisotool
- size
- sminreal
- ss
- ss2ss
- ssbal
- ssdata
- stack
- step
- tf
- tfdata
- totaldelay
- zero
- zgrid
- zpk
- zpkdata
- Index

lqrd
16-123
the discretized plant has equations
and the weighting matrices for the equivalent discrete cost function are
The integrals are computed using matrix exponential formulas due to Van
Loan (see [2]). The plant is discretized using
c2d and the gain matrix is
computed from the discretized data using
dlqr.
Limitations The discretized problem data should meet the requirements for dlqr.
See Also c2d Discretization of LTI model
dlqr State-feedback LQ regulator for discrete plant
kalmd Discrete Kalman estimator for continuous plant
lqr State-feedback LQ regulator for continuous plant
References [1] Franklin, G.F., J.D.Powell, and M.L.Workman, DigitalControlofDynamic
Systems, Second Edition, Addison-Wesley, 1980, pp. 439–440
[2] Van Loan, C.F., “Computing Integrals Involving the Matrix Exponential,”
IEEE Trans. Automatic Control, AC-15, October 1970.
Φτ()
e
A
τ
,= A
d
Φ
T
s
()
=
Γτ()
e
A
η
B
η
,d
0
τ
ò
= B
d
Γ
T
s
()
=
xn 1+
[]
A
d
xn
[]
B
d
un
[]
+=
Q
d
N
d
N
d
T
R
d
Φ
T
τ()
0
Γ
T
τ()
I
QN
N
T
R
Φτ()Γτ()
0 I
τ
d
0
T
s
ò
=