Specifications
Table Of Contents
- Introduction
- LTI Models
- Operations on LTI Models
- Model Analysis Tools
- Arrays of LTI Models
- Customization
- Setting Toolbox Preferences
- Setting Tool Preferences
- Customizing Response Plot Properties
- Design Case Studies
- Reliable Computations
- GUI Reference
- SISO Design Tool Reference
- Menu Bar
- File
- Import
- Export
- Toolbox Preferences
- Print to Figure
- Close
- Edit
- Undo and Redo
- Root Locus and Bode Diagrams
- SISO Tool Preferences
- View
- Root Locus and Bode Diagrams
- System Data
- Closed Loop Poles
- Design History
- Tools
- Loop Responses
- Continuous/Discrete Conversions
- Draw a Simulink Diagram
- Compensator
- Format
- Edit
- Store
- Retrieve
- Clear
- Window
- Help
- Tool Bar
- Current Compensator
- Feedback Structure
- Root Locus Right-Click Menus
- Bode Diagram Right-Click Menus
- Status Panel
- Menu Bar
- LTI Viewer Reference
- Right-Click Menus for Response Plots
- Function Reference
- Functions by Category
- acker
- allmargin
- append
- augstate
- balreal
- bode
- bodemag
- c2d
- canon
- care
- chgunits
- connect
- covar
- ctrb
- ctrbf
- d2c
- d2d
- damp
- dare
- dcgain
- delay2z
- dlqr
- dlyap
- drss
- dsort
- dss
- dssdata
- esort
- estim
- evalfr
- feedback
- filt
- frd
- frdata
- freqresp
- gensig
- get
- gram
- hasdelay
- impulse
- initial
- interp
- inv
- isct, isdt
- isempty
- isproper
- issiso
- kalman
- kalmd
- lft
- lqgreg
- lqr
- lqrd
- lqry
- lsim
- ltimodels
- ltiprops
- ltiview
- lyap
- margin
- minreal
- modred
- ndims
- ngrid
- nichols
- norm
- nyquist
- obsv
- obsvf
- ord2
- pade
- parallel
- place
- pole
- pzmap
- reg
- reshape
- rlocus
- rss
- series
- set
- sgrid
- sigma
- sisotool
- size
- sminreal
- ss
- ss2ss
- ssbal
- ssdata
- stack
- step
- tf
- tfdata
- totaldelay
- zero
- zgrid
- zpk
- zpkdata
- Index

kalman
16-109
16kalman
Purpose Design continuous- or discrete-time Kalman estimator
Syntax [kest,L,P] = kalman(sys,Qn,Rn,Nn)
[kest,L,P,M,Z] = kalman(sys,Qn,Rn,Nn) % discrete time only
[kest,L,P] = kalman(sys,Qn,Rn,Nn,sensors,known)
Description kalman designs a Kalman state estimator given a state-space model of the
plant and the process and measurement noise covariance data. The Kalman
estimator is the optimal solution to the following continuous or discrete
estimation problems.
Continuous-Time Estimation
Given the continuous plant
with known inputs and process and measurement white noise
satisfying
construct a state estimate that minimizes the steady-state error
covariance
The optimal solution is the Kalman filter with equations
where the filter gain is determined by solving an algebraic Riccati equation.
Thisestimatorusestheknowninputs and the measurements togenerate
x
·
Ax Bu Gw++= (state equation)
y
v
Cx Du Hw v++ += (measurement equation)
uwv
,
Ew
()
Ev
()
0, Eww
T
()
Q ,= Evv
T
()
R= , Ewv
T
()
N===
x
ˆ
t
()
PExx
ˆ
–{}
xx
ˆ
–{}
T
()
t
∞→
lim=
x
ˆ
·
Ax
ˆ
Bu L y
v
Cx
ˆ
–
Du–
()
++=
y
ˆ
x
ˆ
C
I
x
ˆ
D
0
u+=
L
uy
v