Specifications
Table Of Contents
- Introduction
- LTI Models
- Operations on LTI Models
- Model Analysis Tools
- Arrays of LTI Models
- Customization
- Setting Toolbox Preferences
- Setting Tool Preferences
- Customizing Response Plot Properties
- Design Case Studies
- Reliable Computations
- GUI Reference
- SISO Design Tool Reference
- Menu Bar
- File
- Import
- Export
- Toolbox Preferences
- Print to Figure
- Close
- Edit
- Undo and Redo
- Root Locus and Bode Diagrams
- SISO Tool Preferences
- View
- Root Locus and Bode Diagrams
- System Data
- Closed Loop Poles
- Design History
- Tools
- Loop Responses
- Continuous/Discrete Conversions
- Draw a Simulink Diagram
- Compensator
- Format
- Edit
- Store
- Retrieve
- Clear
- Window
- Help
- Tool Bar
- Current Compensator
- Feedback Structure
- Root Locus Right-Click Menus
- Bode Diagram Right-Click Menus
- Status Panel
- Menu Bar
- LTI Viewer Reference
- Right-Click Menus for Response Plots
- Function Reference
- Functions by Category
- acker
- allmargin
- append
- augstate
- balreal
- bode
- bodemag
- c2d
- canon
- care
- chgunits
- connect
- covar
- ctrb
- ctrbf
- d2c
- d2d
- damp
- dare
- dcgain
- delay2z
- dlqr
- dlyap
- drss
- dsort
- dss
- dssdata
- esort
- estim
- evalfr
- feedback
- filt
- frd
- frdata
- freqresp
- gensig
- get
- gram
- hasdelay
- impulse
- initial
- interp
- inv
- isct, isdt
- isempty
- isproper
- issiso
- kalman
- kalmd
- lft
- lqgreg
- lqr
- lqrd
- lqry
- lsim
- ltimodels
- ltiprops
- ltiview
- lyap
- margin
- minreal
- modred
- ndims
- ngrid
- nichols
- norm
- nyquist
- obsv
- obsvf
- ord2
- pade
- parallel
- place
- pole
- pzmap
- reg
- reshape
- rlocus
- rss
- series
- set
- sgrid
- sigma
- sisotool
- size
- sminreal
- ss
- ss2ss
- ssbal
- ssdata
- stack
- step
- tf
- tfdata
- totaldelay
- zero
- zgrid
- zpk
- zpkdata
- Index

drss
16-63
16drss
Purpose Generate stable random discrete test models
Syntax sys = drss(n)
sys = drss(n,p)
sys = drss(n,p,m)
sys = drss(n,p,m,s1,...sn)
Description sys = drss(n) produces a random n-th orderstable model with one inputand
one output, and returns the model in the state-space object
sys.
drss(n,p) produces a random n-th order stable model with one input and p
outputs.
drss(n,m,p) generates a random n-th order stable model with m inputs and p
outputs.
drss(n,p,m,s1,...sn) generates a s1–by–sn array of random n-th order
stable model with
m inputs and p outputs.
In all cases, the discrete-time state-space model or array returned by
drss has
an unspecified sampling time. To generate transfer function or zero-pole-gain
systems, convert
sys using tf or zpk.
Example Generate a random discrete LTI system with three states, two inputs, and two
outputs.
sys = drss(3,2,2)
a =
x1 x2 x3
x1 0.38630 -0.21458 -0.09914
x2 -0.23390 -0.15220 -0.06572
x3 -0.03412 0.11394 -0.22618
b =
u1 u2
x1 0.98833 0.51551
x2 0 0.33395
x3 0.42350 0.43291