Specifications
Table Of Contents
- Introduction
- LTI Models
- Operations on LTI Models
- Model Analysis Tools
- Arrays of LTI Models
- Customization
- Setting Toolbox Preferences
- Setting Tool Preferences
- Customizing Response Plot Properties
- Design Case Studies
- Reliable Computations
- GUI Reference
- SISO Design Tool Reference
- Menu Bar
- File
- Import
- Export
- Toolbox Preferences
- Print to Figure
- Close
- Edit
- Undo and Redo
- Root Locus and Bode Diagrams
- SISO Tool Preferences
- View
- Root Locus and Bode Diagrams
- System Data
- Closed Loop Poles
- Design History
- Tools
- Loop Responses
- Continuous/Discrete Conversions
- Draw a Simulink Diagram
- Compensator
- Format
- Edit
- Store
- Retrieve
- Clear
- Window
- Help
- Tool Bar
- Current Compensator
- Feedback Structure
- Root Locus Right-Click Menus
- Bode Diagram Right-Click Menus
- Status Panel
- Menu Bar
- LTI Viewer Reference
- Right-Click Menus for Response Plots
- Function Reference
- Functions by Category
- acker
- allmargin
- append
- augstate
- balreal
- bode
- bodemag
- c2d
- canon
- care
- chgunits
- connect
- covar
- ctrb
- ctrbf
- d2c
- d2d
- damp
- dare
- dcgain
- delay2z
- dlqr
- dlyap
- drss
- dsort
- dss
- dssdata
- esort
- estim
- evalfr
- feedback
- filt
- frd
- frdata
- freqresp
- gensig
- get
- gram
- hasdelay
- impulse
- initial
- interp
- inv
- isct, isdt
- isempty
- isproper
- issiso
- kalman
- kalmd
- lft
- lqgreg
- lqr
- lqrd
- lqry
- lsim
- ltimodels
- ltiprops
- ltiview
- lyap
- margin
- minreal
- modred
- ndims
- ngrid
- nichols
- norm
- nyquist
- obsv
- obsvf
- ord2
- pade
- parallel
- place
- pole
- pzmap
- reg
- reshape
- rlocus
- rss
- series
- set
- sgrid
- sigma
- sisotool
- size
- sminreal
- ss
- ss2ss
- ssbal
- ssdata
- stack
- step
- tf
- tfdata
- totaldelay
- zero
- zgrid
- zpk
- zpkdata
- Index

dlqr
16-60
16dlqr
Purpose Design linear-quadratic (LQ) state-feedback regulator for discrete-time plant
Syntax [K,S,e] = dlqr(a,b,Q,R)
[K,S,e] = dlqr(a,b,Q,R,N)
Description [K,S,e] = dlqr(a,b,Q,R,N) calculates the optimal gain matrix K such that
the state-feedback law
minimizes the quadratic cost function
for the discrete-time state-space mode
l
The default value
N=0 is assumed when N is omitted.
In addition to the state-feedback gain
K, dlqr returns the infinite horizon
solution S of the associated discrete-time Riccati equation
and the closed-loop eigenvalues
e = eig(a-b*K).NotethatK is derived from
S by
Limitations The problem data must satisfy:
• The pair is stabilizable.
• and .
• has no unobservable mode on the unit circle.
See Also dare Solve discrete Riccati equations
lqgreg LQG regulator
un
[]
Kx n
[]
–=
Ju
()
xn
[]
T
Qx n
[]
un
[]
T
Ru n
[]
2xn
[]
T
Nu n
[]
++
()
n 1=
∞
å
=
xn 1+
[]
Ax n
[]
Bu n
[]
+=
A
T
SA S– A
T
SB N+
()
B
T
SB R+
()
1–
B
T
SA N
T
+
()
– Q+ 0=
KB
T
SB R+
()
1–
B
T
SA N
T
+
()
=
AB
,()
R 0
>
QNR
1–
N
T
– 0
≥
QNR
1–
N
T
– ABR
1–
N
T
–,()