Specifications
Table Of Contents
- Introduction
- LTI Models
- Operations on LTI Models
- Model Analysis Tools
- Arrays of LTI Models
- Customization
- Setting Toolbox Preferences
- Setting Tool Preferences
- Customizing Response Plot Properties
- Design Case Studies
- Reliable Computations
- GUI Reference
- SISO Design Tool Reference
- Menu Bar
- File
- Import
- Export
- Toolbox Preferences
- Print to Figure
- Close
- Edit
- Undo and Redo
- Root Locus and Bode Diagrams
- SISO Tool Preferences
- View
- Root Locus and Bode Diagrams
- System Data
- Closed Loop Poles
- Design History
- Tools
- Loop Responses
- Continuous/Discrete Conversions
- Draw a Simulink Diagram
- Compensator
- Format
- Edit
- Store
- Retrieve
- Clear
- Window
- Help
- Tool Bar
- Current Compensator
- Feedback Structure
- Root Locus Right-Click Menus
- Bode Diagram Right-Click Menus
- Status Panel
- Menu Bar
- LTI Viewer Reference
- Right-Click Menus for Response Plots
- Function Reference
- Functions by Category
- acker
- allmargin
- append
- augstate
- balreal
- bode
- bodemag
- c2d
- canon
- care
- chgunits
- connect
- covar
- ctrb
- ctrbf
- d2c
- d2d
- damp
- dare
- dcgain
- delay2z
- dlqr
- dlyap
- drss
- dsort
- dss
- dssdata
- esort
- estim
- evalfr
- feedback
- filt
- frd
- frdata
- freqresp
- gensig
- get
- gram
- hasdelay
- impulse
- initial
- interp
- inv
- isct, isdt
- isempty
- isproper
- issiso
- kalman
- kalmd
- lft
- lqgreg
- lqr
- lqrd
- lqry
- lsim
- ltimodels
- ltiprops
- ltiview
- lyap
- margin
- minreal
- modred
- ndims
- ngrid
- nichols
- norm
- nyquist
- obsv
- obsvf
- ord2
- pade
- parallel
- place
- pole
- pzmap
- reg
- reshape
- rlocus
- rss
- series
- set
- sgrid
- sigma
- sisotool
- size
- sminreal
- ss
- ss2ss
- ssbal
- ssdata
- stack
- step
- tf
- tfdata
- totaldelay
- zero
- zgrid
- zpk
- zpkdata
- Index

Creating LTI Models
2-21
creates the same TF model as
H = tf([1 2], [1 0.6 0.9], 0.1);
Similarly,
z = zpk('z', 0.1);
H = [z/(z+0.1)/(z+0.2) ; (z^2+0.2*z+0.1)/(z^2+0.2*z+0.01)]
produces the single-input, two-output ZPK model
Zero/pole/gain from input to output...
z
#1: ---------------
(z+0.1) (z+0.2)
(z^2 + 0.2z + 0.1)
#2: ------------------
(z+0.1)^2
Sampling time: 0.1
Note that:
•The syntax
z = tf('z') is equivalent to z = tf('z',–1) and leaves the
sample time unspecified. The same applies to
z = zpk('z').
•Once you have defined
z as indicated above, any rational expressions in z
createsadiscrete-timemodelofthesametypeandwiththesamesample
time as
z.
Discrete Transfer Functions in DSP Format
In digital signal processing (DSP), it is customary to write discrete transfer
functions as rational expressions in and to order the numerator and
denominator coefficients in ascending powers of . For example, the
numerator and denominator of
wouldbespecifiedastherowvectors
[1 0.5] and [1 2 3], respectively. When
the numerator and denominator have different degrees, this convention
z
1–
z
1
–
Hz
1–
()
10.5z
1–
+
12z
1–
3z
2–
++
----------------------------------------
=