Specifications
Table Of Contents
- Introduction
- LTI Models
- Operations on LTI Models
- Model Analysis Tools
- Arrays of LTI Models
- Customization
- Setting Toolbox Preferences
- Setting Tool Preferences
- Customizing Response Plot Properties
- Design Case Studies
- Reliable Computations
- GUI Reference
- SISO Design Tool Reference
- Menu Bar
- File
- Import
- Export
- Toolbox Preferences
- Print to Figure
- Close
- Edit
- Undo and Redo
- Root Locus and Bode Diagrams
- SISO Tool Preferences
- View
- Root Locus and Bode Diagrams
- System Data
- Closed Loop Poles
- Design History
- Tools
- Loop Responses
- Continuous/Discrete Conversions
- Draw a Simulink Diagram
- Compensator
- Format
- Edit
- Store
- Retrieve
- Clear
- Window
- Help
- Tool Bar
- Current Compensator
- Feedback Structure
- Root Locus Right-Click Menus
- Bode Diagram Right-Click Menus
- Status Panel
- Menu Bar
- LTI Viewer Reference
- Right-Click Menus for Response Plots
- Function Reference
- Functions by Category
- acker
- allmargin
- append
- augstate
- balreal
- bode
- bodemag
- c2d
- canon
- care
- chgunits
- connect
- covar
- ctrb
- ctrbf
- d2c
- d2d
- damp
- dare
- dcgain
- delay2z
- dlqr
- dlyap
- drss
- dsort
- dss
- dssdata
- esort
- estim
- evalfr
- feedback
- filt
- frd
- frdata
- freqresp
- gensig
- get
- gram
- hasdelay
- impulse
- initial
- interp
- inv
- isct, isdt
- isempty
- isproper
- issiso
- kalman
- kalmd
- lft
- lqgreg
- lqr
- lqrd
- lqry
- lsim
- ltimodels
- ltiprops
- ltiview
- lyap
- margin
- minreal
- modred
- ndims
- ngrid
- nichols
- norm
- nyquist
- obsv
- obsvf
- ord2
- pade
- parallel
- place
- pole
- pzmap
- reg
- reshape
- rlocus
- rss
- series
- set
- sgrid
- sigma
- sisotool
- size
- sminreal
- ss
- ss2ss
- ssbal
- ssdata
- stack
- step
- tf
- tfdata
- totaldelay
- zero
- zgrid
- zpk
- zpkdata
- Index

d2c
16-49
16d2c
Purpose Convert discrete-time LTI models to continuous time
Syntax sysc = d2c(sysd)
sysc = d2c(sysd,method)
Description d2c converts LTI models from discrete to continuous time using one of the
following conversion methods:
The string
method specifies the conversion method. If method is omitted then
zero-order hold (
'zoh') is assumed. See “Continuous/Discrete Conversions of
LTI Models” in Chapter 3 of this manual and reference [1] for more details on
the conversion methods.
Example Consider the discrete-time model with transfer function
and sample time second. You can derive a continuous-time
zero-order-hold equivalent model by typing
Hc = d2c(H)
DiscretizingtheresultingmodelHc with the zero-order hold method (this is the
default method) and sampling period gives back the original discrete
model . To see this, type
c2d(Hc,0.1)
To use the Tustin approximation instead of zero-order hold, type
Hc = d2c(H,'tustin')
As with zero-order hold, the inverse discretization operation
'zoh'
Zero-order hold on the inputs. The control inputs are
assumed piecewise constant over the sampling period.
'tustin'
Bilinear (Tustin) approximation to the derivative.
'prewarp'
Tustin approximation with frequency prewarping.
'matched'
Matched pole-zero method of [1] (for SISO systems only).
Hz
()
z 1–
z
2
z 0.3++
-----------------------------
=
T
s
0.1=
T
s
0.1=
Hz
()